Complete spherical convex bodies

被引:0
|
作者
Marek Lassak
机构
[1] University of Technology and Life Sciences,
来源
Journal of Geometry | 2020年 / 111卷
关键词
Sphere; lune; convex body; complete body; constant width; constant diameter; 52A55;
D O I
暂无
中图分类号
学科分类号
摘要
Similarly to the classic notion in Euclidean space, we call a set on the sphere Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} complete, provided adding any extra point increases its diameter. Complete sets are convex bodies on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}. Our main theorem says that on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} complete bodies of diameter δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} coincide with bodies of constant width δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] On the covering index of convex bodies
    Bezdek, Karoly
    Khan, Muhammad A.
    AEQUATIONES MATHEMATICAE, 2016, 90 (05) : 879 - 903
  • [42] Mixed Functionals of Convex Bodies
    R. Schneider
    Discrete & Computational Geometry, 2000, 24 : 527 - 538
  • [43] On the Monotonicity of Perimeter of Convex Bodies
    Stefani, Giorgio
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (01) : 93 - 102
  • [44] Algebraic Equations and Convex Bodies
    Kaveh, Kiumars
    Khovanskii, Askold
    PERSPECTIVES IN ANALYSIS, GEOMETRY, AND TOPOLOGY: ON THE OCCASION OF THE 60TH BIRTHDAY OF OLEG VIRO, 2012, 296 : 263 - +
  • [45] The Blocking Numbers of Convex Bodies
    L. Dalla
    D. G. Larman
    P. Mani-Levitska
    C. Zong
    Discrete & Computational Geometry, 2000, 24 : 267 - 278
  • [46] Inner Products for Convex Bodies
    Bryant, David
    Cioica-Licht, Petru
    Clark, Lisa Orloff
    Young, Rachael
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (04) : 1249 - 1264
  • [47] STABLE STRICTLY CONVEX BODIES
    Jo, Kyeonghee
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (02): : 241 - 250
  • [48] Convex bodies and multiplicities of ideals
    Kiumars Kaveh
    Askold Khovanskii
    Proceedings of the Steklov Institute of Mathematics, 2014, 286 : 268 - 284
  • [49] Normal bundles of convex bodies
    Gruber, Peter M.
    ADVANCES IN MATHEMATICS, 2014, 254 : 419 - 453
  • [50] The computational complexity of convex bodies
    Barvinok, Alexander
    Veomett, Ellen
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 117 - 137