Complete spherical convex bodies

被引:0
|
作者
Marek Lassak
机构
[1] University of Technology and Life Sciences,
来源
Journal of Geometry | 2020年 / 111卷
关键词
Sphere; lune; convex body; complete body; constant width; constant diameter; 52A55;
D O I
暂无
中图分类号
学科分类号
摘要
Similarly to the classic notion in Euclidean space, we call a set on the sphere Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} complete, provided adding any extra point increases its diameter. Complete sets are convex bodies on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}. Our main theorem says that on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} complete bodies of diameter δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} coincide with bodies of constant width δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Reduced convex bodies in Euclidean space-A survey
    Lassak, Marek
    Martini, Horst
    EXPOSITIONES MATHEMATICAE, 2011, 29 (02) : 204 - 219
  • [32] On the total perimeter of homothetic convex bodies in a convex container
    Dumitrescu A.
    Tóth C.D.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2): : 515 - 532
  • [33] Some geometry of convex bodies in C(K) spaces
    Moreno, Jose Pedro
    Schneider, Rolf
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02): : 352 - 373
  • [34] CHARACTERIZATIONS OF CENTRAL SYMMETRY FOR CONVEX BODIES IN MINKOWSKI SPACES
    Averkov, Gennadiy
    Makai, Endre, Jr.
    Martini, Horst
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2009, 46 (04) : 493 - 514
  • [35] Approximation of Convex Bodies by ConvexBodies
    国起
    StenKaijser
    Northeastern Mathematical Journal, 2003, (04) : 323 - 332
  • [36] The blocking numbers of convex bodies
    Dalla, L
    Larman, DG
    Mani-Levitska, P
    Zong, C
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (2-3) : 267 - 277
  • [37] Contact points of convex bodies
    M. Rudelson
    Israel Journal of Mathematics, 1997, 101 : 93 - 124
  • [38] GAUSSIAN PROCESSES AND CONVEX BODIES
    Vitale, R. A.
    ECS10: THE10TH EUROPEAN CONGRESS OF STEREOLOGY AND IMAGE ANALYSIS, 2009, : 89 - 93
  • [39] On the covering index of convex bodies
    Károly Bezdek
    Muhammad A. Khan
    Aequationes mathematicae, 2016, 90 : 879 - 903
  • [40] On the Distance between Convex Bodies
    国起
    Northeastern Mathematical Journal, 1999, (03) : 323 - 331