Complete spherical convex bodies

被引:0
|
作者
Marek Lassak
机构
[1] University of Technology and Life Sciences,
来源
Journal of Geometry | 2020年 / 111卷
关键词
Sphere; lune; convex body; complete body; constant width; constant diameter; 52A55;
D O I
暂无
中图分类号
学科分类号
摘要
Similarly to the classic notion in Euclidean space, we call a set on the sphere Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} complete, provided adding any extra point increases its diameter. Complete sets are convex bodies on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}. Our main theorem says that on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} complete bodies of diameter δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} coincide with bodies of constant width δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] On the girth of convex bodies
    H. Groemer
    Archiv der Mathematik, 1997, 69 : 75 - 81
  • [22] Fiber Convex Bodies
    Léo Mathis
    Chiara Meroni
    Discrete & Computational Geometry, 2023, 70 : 1451 - 1475
  • [23] Width of convex bodies in spaces of constant curvature
    E. Gallego
    A. Reventós
    G. Solanes
    E. Teufel
    manuscripta mathematica, 2008, 126 : 115 - 134
  • [24] On asphericity of convex bodies
    Dudov S.I.
    Meshcheryakova E.A.
    Russian Mathematics, 2015, 59 (2) : 36 - 47
  • [25] On the quermassintegrals of convex bodies
    Zhao, Chang Jian
    Cheung, Wing Sum
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [26] Smooth convex bodies with proportional projection functions
    Ralph Howard
    Daniel Hug
    Israel Journal of Mathematics, 2007, 159 : 317 - 341
  • [27] Approximation of Convex Bodies by Centrally Symmetric Bodies
    Marek Lassak
    Geometriae Dedicata, 1998, 72 : 63 - 68
  • [28] Approximation of convex bodies by centrally symmetric bodies
    Lassak, M
    GEOMETRIAE DEDICATA, 1998, 72 (01) : 63 - 68
  • [29] Approximation of convex bodies by axially symmetric bodies
    Lassak, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (10) : 3075 - 3084
  • [30] Spherical floating bodies
    Kurusa, Arpad
    Odor, Tibor
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4): : 699 - 714