A note on Fisher information hypocoercive decay for the linear Boltzmann equation

被引:0
作者
Pierre Monmarché
机构
[1] Sorbonne Université,
[2] LJLL and LCT,undefined
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Hypocoercivity; Linear Boltzmann equation; Fisher information; Randomized HMC; 35K99; 60J25;
D O I
暂无
中图分类号
学科分类号
摘要
This note deals with the linear Boltzmann equation in the non-compact setting with a confining potential which is close to quadratic. We prove that in this situation, starting from a smooth initial datum, the Fisher Information (and hence, the relative entropy) with respect to the stationary state converges exponentially fast to zero.
引用
收藏
相关论文
共 23 条
  • [11] Mouhot C(2019)Generalized Potential Anal. 50 439-466
  • [12] Schmeiser C(2017) calculus and application to interacting particles on a graph J. Funct. Anal. 272 5360-5383
  • [13] Hairer M(undefined)Hypercontractivity and applications for stochastic hamiltonian systems undefined undefined undefined-undefined
  • [14] Mattingly J(undefined)undefined undefined undefined undefined-undefined
  • [15] Hérau F(undefined)undefined undefined undefined undefined-undefined
  • [16] Iacobucci A(undefined)undefined undefined undefined undefined-undefined
  • [17] Olla S(undefined)undefined undefined undefined undefined-undefined
  • [18] Stoltz G(undefined)undefined undefined undefined undefined-undefined
  • [19] Letizia V(undefined)undefined undefined undefined undefined-undefined
  • [20] Olla S(undefined)undefined undefined undefined undefined-undefined