A note on Fisher information hypocoercive decay for the linear Boltzmann equation

被引:0
作者
Pierre Monmarché
机构
[1] Sorbonne Université,
[2] LJLL and LCT,undefined
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Hypocoercivity; Linear Boltzmann equation; Fisher information; Randomized HMC; 35K99; 60J25;
D O I
暂无
中图分类号
学科分类号
摘要
This note deals with the linear Boltzmann equation in the non-compact setting with a confining potential which is close to quadratic. We prove that in this situation, starting from a smooth initial datum, the Fisher Information (and hence, the relative entropy) with respect to the stationary state converges exponentially fast to zero.
引用
收藏
相关论文
共 23 条
  • [1] Achleitner F(2015)Large-time behavior in non-symmetric Fokker–Planck equations Riv. Math. Univ. Parma (N.S.) 6 1-68
  • [2] Arnold A(2017)Bakry–Émery meet Villani J. Funct. Anal. 273 2275-2291
  • [3] Stürzer D(2017)Randomized Hamiltonian Monte Carlo Ann. Appl. Probab. 27 2159-2194
  • [4] Baudoin F(2003)Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles Commun. Partial Differ. Equ. 28 969-989
  • [5] Bou-Rabee N(2015)Hypocoercivity for linear kinetic equations conserving mass Trans. Am. Math. Soc. 367 3807-3828
  • [6] Sanz-Serna J(2009)Slow energy dissipation in anharmonic oscillator chains Commun. Pure Appl. Math. 62 999-1032
  • [7] Cáceres MJ(2006)Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation Asymptot. Anal. 46 349-359
  • [8] Carrillo JA(2019)Convergence rates for nonequilibrium Langevin dynamics Ann. Math. Québec 43 73-98
  • [9] Goudon T(2017)Nonequilibrium isothermal transformations in a temperature gradient from a microscopic dynamics Ann. Probab. 45 3987-4018
  • [10] Dolbeault J(2016)Long-time behaviour and propagation of chaos for mean field kinetic particles Stochastic Process. Their Appl. 127 1721-1737