Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation

被引:0
作者
I. M. Gamba
V. Panferov
C. Villani
机构
[1] University of Texas at Austin,Department of Mathematics
[2] McMaster University,Department of Mathematics and Statistics
[3] UMPA,undefined
[4] ENS Lyon,undefined
来源
Archive for Rational Mechanics and Analysis | 2009年 / 194卷
关键词
Boltzmann Equation; Comparison Principle; Linear Boltzmann Equation; Moment Inequality; Collision Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
For the spatially homogeneous Boltzmann equation with cutoff hard potentials, it is shown that solutions remain bounded from above uniformly in time by a Maxwellian distribution, provided the initial data have a Maxwellian upper bound. The main technique is based on a comparison principle that uses a certain dissipative property of the linear Boltzmann equation. Implications of the technique to propagation of upper Maxwellian bounds in the spatially-inhomogeneous case are discussed.
引用
收藏
页码:253 / 282
页数:29
相关论文
共 37 条
[1]  
Arkeryd L.(1972)On the Boltzmann equation. I. Existence II The full initial value problem. Arch. Ration. Mech. Anal. 45 1-34
[2]  
Arkeryd L.(1983) estimates for the space-homogeneous Boltzmann equation J. Stat. Phys. 31 347-361
[3]  
Arkeryd L.(1987)The Boltzmann equation for weakly inhomogeneous data Comm. Math. Phys. 111 393-407
[4]  
Esposito R.(1985)On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic stability J. Math. Phys. 26 334-338
[5]  
Pulvirenti M.(1997)Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems J. Stat. Phys. 88 1183-1214
[6]  
Bellomo N.(2004)Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions J. Stat. Phys. 116 1651-1682
[7]  
Toscani G.(1933)Sur la théorie de l’équation intégrodifférentielle de Boltzmann Acta Math. 60 91-146
[8]  
Bobylev A.V.(1980)Some relations between nonexpansive and order preserving mappings Proc. Am. Math. Soc. 78 385-390
[9]  
Bobylev A.V.(1993)Some applications of the method of moments for the homogeneous Boltzmann and Kac equations Arch. Ration. Mech. Anal. 123 387-404
[10]  
Gamba I. M.(1974)Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non Maxwellian case Comm. Math. Phys. 38 331-340