The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces

被引:0
|
作者
Xiaoyan Guan
Shaoli Wang
Ye Lv
Fuyi Xu
机构
[1] State Key Laboratory of Simulation and Regulation of Water Cycle in a River Basin,School of Science
[2] National Center of Efficient Irrigation Engineering and Technology Research-Beijing,undefined
[3] Shandong University of Technology,undefined
来源
Acta Applicandae Mathematicae | 2016年 / 143卷
关键词
Besov spaces; Chemotaxis model; Convergence rates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the Cauchy problem to the multi-dimensional (N≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq4$\end{document}) chemotaxis model. We prove the optimal convergence rates of the strong solutions to the system for initial data close to a stable equilibrium state in critical Besov spaces. Our main ideas are based on the low-high frequency decomposition and the smooth effect of dissipative operator.
引用
收藏
页码:91 / 104
页数:13
相关论文
共 28 条
  • [21] Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces
    Albani, V.
    Elbau, P.
    de Hoop, M. V.
    Scherzer, O.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (05) : 521 - 540
  • [22] Optimal Time-Decay Estimates in the Critical Framework for a Chemotaxis Model
    Shi, Weixuan
    Zhang, Jianzhong
    Xie, Mingfeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1003 - 1026
  • [23] Optimal Time-Decay Estimates in the Critical Framework for a Chemotaxis Model
    Weixuan Shi
    Jianzhong Zhang
    Mingfeng Xie
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1003 - 1026
  • [24] GLOBAL EXISTENCE AND OPTIMAL TIME DECAY FOR THE BAER-NUNZIATO MODEL IN THE Lp CRITICAL BESOV SPACE
    Zhu, Limin
    Cao, Hongmei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (10): : 4228 - 4268
  • [25] Optimal convergence rates of Bayesian wavelet estimation with a novel empirical prior in nonparametric regression model
    Yu, Yuncai
    Liu, Ling
    Wu, Peng
    Liu, Xinsheng
    STATISTICS, 2022, 56 (03) : 565 - 577
  • [26] The optimal convergence rates of non-isentropic subsonic Euler flows through the infinitely long three-dimensional axisymmetric nozzles
    Ma, Lei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) : 6553 - 6565
  • [27] ON THE WELL-POSEDNESS AND DECAY RATES OF STRONG SOLUTIONS TO A MULTI-DIMENSIONAL NON-CONSERVATIVE VISCOUS COMPRESSIBLE TWO-FLUID SYSTEM
    Xu, Fuyi
    Chi, Meiling
    Liu, Lishan
    Wu, Yonghong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (05) : 2515 - 2559
  • [28] Ill-posedness issue for a multidimensional hyperbolic-parabolic . model of chemotaxis in critical Besov spaces (B)over dot2d, 1-3/2 x ((B)over dot2d, 1-1/2)d
    Nie, Yao
    Yuan, Jia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)