The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces

被引:0
|
作者
Xiaoyan Guan
Shaoli Wang
Ye Lv
Fuyi Xu
机构
[1] State Key Laboratory of Simulation and Regulation of Water Cycle in a River Basin,School of Science
[2] National Center of Efficient Irrigation Engineering and Technology Research-Beijing,undefined
[3] Shandong University of Technology,undefined
来源
Acta Applicandae Mathematicae | 2016年 / 143卷
关键词
Besov spaces; Chemotaxis model; Convergence rates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the Cauchy problem to the multi-dimensional (N≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq4$\end{document}) chemotaxis model. We prove the optimal convergence rates of the strong solutions to the system for initial data close to a stable equilibrium state in critical Besov spaces. Our main ideas are based on the low-high frequency decomposition and the smooth effect of dissipative operator.
引用
收藏
页码:91 / 104
页数:13
相关论文
共 28 条
  • [1] The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces
    Guan, Xiaoyan
    Wang, Shaoli
    Lv, Ye
    Xu, Fuyi
    ACTA APPLICANDAE MATHEMATICAE, 2016, 143 (01) : 91 - 104
  • [2] The optimal convergence rates for the multi-dimensional compressible viscoelastic flows
    Xu, Fuyi
    Zhang, Xinguang
    Wu, Yonghong
    Liu, Lishan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (12): : 1490 - 1504
  • [3] Optimal convergence rates for sparsity promoting wavelet-regularization in Besov spaces
    Hohage, Thorsten
    Miller, Philip
    INVERSE PROBLEMS, 2019, 35 (06)
  • [4] Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces
    Chengchun Hao
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 825 - 834
  • [5] Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces
    Hao, Chengchun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 825 - 834
  • [6] Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation
    Gantumur, Tsogtgerel
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (04) : 917 - 956
  • [7] Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation
    Tsogtgerel Gantumur
    Foundations of Computational Mathematics, 2017, 17 : 917 - 956
  • [8] On the convergence rates of multi-dimensional subsonic irrotational flows in unbounded domains
    Ma, Lei
    Wang, Tian-Yi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [9] On the convergence rates of multi-dimensional subsonic irrotational flows in unbounded domains
    Lei Ma
    Tian-Yi Wang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [10] Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces
    Nie, Yao
    Yuan, Jia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196