Classification of optical coherence tomography images using a capsule network

被引:0
作者
Takumasa Tsuji
Yuta Hirose
Kohei Fujimori
Takuya Hirose
Asuka Oyama
Yusuke Saikawa
Tatsuya Mimura
Kenshiro Shiraishi
Takenori Kobayashi
Atsushi Mizota
Jun’ichi Kotoku
机构
[1] Teikyo University,Graduate School of Medical and Care Technology
[2] Teikyo University School of Medicine,Department of Ophthalmology
[3] Teikyo University School of Medicine,Department of Radiology
[4] Teikyo University Hospital,Central Radiology Division
来源
BMC Ophthalmology | / 20卷
关键词
Capsule network; Choroidal neovascularization; Deep learning; Diabetic macular edema; Drusen; Optical coherence tomography;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 72 条
[1]  
Chan M(2014)Global report on diabetes World Health Organ 58 1-88
[2]  
Varma R(2014)Prevalence of and risk factors for diabetic macular edema in the United States JAMA Ophthalmol 132 1334-e116
[3]  
Bressler NM(2014)Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis Lancet Glob Heal 2 e106-12
[4]  
Doan QV(2017)The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [invited] Biomed Opt Express 8 1638-16
[5]  
Gleeson M(2018)Deep learning in chest radiography: detection of findings and presence of change PLoS One 13 1-21
[6]  
Danese M(2018)Deep learning-based quantification of abdominal fat on magnetic resonance images PLoS One 13 1-17
[7]  
Bower JK(2017)Deep reconstruction model for dynamic PET images PLoS One 12 1-1131
[8]  
Wong WL(2018)Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study PLoS Med 15 1-618
[9]  
Su X(2018)Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms BMC Ophthalmol 18 288-6793
[10]  
Li X(2019)Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema BMC Ophthalmol 19 178-742