Primordial nucleosynthesis

被引:0
作者
C. Gustavino
M. Anders
D. Bemmerer
Z. Elekes
D. Trezzi
机构
[1] INFN,
[2] Sezione di Roma La Sapienza,undefined
[3] Helmholtz-Zentrum Dresden-Rossendorf,undefined
[4] Technische Universität Dresden,undefined
[5] Institute for Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki),undefined
[6] Università degli Studi di Milano and INFN,undefined
来源
The European Physical Journal A | 2016年 / 52卷
关键词
Baryon Density; Lithium Abundance; Primordial Abundance; Cosmic Microwave Background Experiment; Luna Data;
D O I
暂无
中图分类号
学科分类号
摘要
Big Bang nucleosynthesis (BBN) describes the production of light nuclei in the early phases of the Universe. For this, precise knowledge of the cosmological parameters, such as the baryon density, as well as the cross section of the fusion reactions involved are needed. In general, the energies of interest for BBN are so low (E < 1MeV) that nuclear cross section measurements are practically unfeasible at the Earth’s surface. As of today, LUNA (Laboratory for Underground Nuclear Astrophysics) has been the only facility in the world available to perform direct measurements of small cross section in a very low background radiation. Owing to the background suppression provided by about 1400 meters of rock at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and to the high current offered by the LUNA accelerator, it has been possible to investigate cross sections at energies of interest for Big Bang nucleosynthesis using protons, 3He and alpha particles as projectiles. The main reaction studied in the past at LUNA is the 2H(4He,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document})6Li . Its cross section was measured directly, for the first time, in the BBN energy range. Other processes like 2H(p,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document})3He , 3He(2H, p)4He and 3He(4He,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document})7Be were also studied at LUNA, thus enabling to reduce the uncertainty on the overall reaction rate and consequently on the determination of primordial abundances. The improvements on BBN due to the LUNA experimental data will be discussed and a perspective of future measurements will be outlined.
引用
收藏
相关论文
共 84 条
[1]  
Iocco F.(2009)undefined Phys. Rep. 472 176-undefined
[2]  
Serpico P.D.(2004)undefined J. Cosmol. Astropart. Phys. 2004 010-undefined
[3]  
Izotov Y.I.(2013)undefined Astron. Astrophys. 558 A57-undefined
[4]  
Cooke R.J.(2014)undefined Astrophys. J. 781 31-undefined
[5]  
Bania T.(2002)undefined Nature 415 54-undefined
[6]  
Ryan S.G.(2000)undefined Astrophys. J. Lett. 530 L57-undefined
[7]  
Anders M.(2014)undefined Phys. Rev. Lett. 113 042501-undefined
[8]  
Asplund M.(2006)undefined Astrophys. J. 644 229-undefined
[9]  
Casella C.(2002)undefined Nucl. Phys. A 706 203-undefined
[10]  
Costantini H.(2000)undefined Phys. Lett. B 482 43-undefined