Renaming and the weakest family of failure detectors

被引:0
作者
Yehuda Afek
Petr Kuznetsov
Israel Nir
机构
[1] Tel Aviv University,Blavatnik School of Computer Science
[2] TU Berlin/Deutsche Telekom Laboratories,undefined
来源
Distributed Computing | 2012年 / 25卷
关键词
Symmetry Breaking; Correct Process; Failure Detector; Failure Pattern; Faulty Process;
D O I
暂无
中图分类号
学科分类号
摘要
We address the question of the weakest failure detector to circumvent the impossibility of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n-2)$$\end{document}-renaming in a system of up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} participating processes. We derive that in a restricted class of eventual failure detectors there does not exist a single weakest oracle, but a weakest family of oracles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _n$$\end{document}: every two oracles in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _n$$\end{document} are incomparable, and every oracle that allows for solving renaming provides at least as much information about failures as one of the oracles in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _n$$\end{document}. As a by product, we obtain one more evidence that renaming is strictly easier to solve than set agreement.
引用
收藏
页码:411 / 425
页数:14
相关论文
共 39 条
[1]  
Attiya H(1990)Renaming in an asynchronous environment J. ACM 37 524-548
[2]  
Bar-Noy B(2002)The combinatorial structure of wait-free solvable tasks SIAM J. Comput. 31 1286-1313
[3]  
Dolev D(2001)The BG distributed simulation algorithm Distrib. Comput. 14 127-146
[4]  
Peleg D(2010)New combinatorial topology upper and lower bounds for renaming: the lower bound Distrib. Comput. 52 287-301
[5]  
Reischuk R(2012)New combinatorial topology upper and lower bounds for renaming: the upper bound J. ACM 59 1-3
[6]  
Attiya H(1996)The weakest failure detector for solving consensus J. ACM 43 685-722
[7]  
Rajsbaum S(1996)Unreliable failure detectors for reliable distributed systems J. ACM 43 225-267
[8]  
Borowsky E.(1985)Impossibility of distributed consensus with one faulty process J. ACM 32 374-382
[9]  
Gafni E.(2011)On set consensus numbers Distrib. Comput. 24 149-163
[10]  
Lynch N.(2009)From adaptive renaming to set agreement Theor. Comput. Sci. 410 1328-1335