From spin vertex to string vertex

被引:0
作者
Yunfeng Jiang
Andrei Petrovskii
机构
[1] Institut de Physique Théorique,
[2] DSM,undefined
[3] CEA,undefined
[4] URA2306 CNRS,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
Extended Supersymmetry; AdS-CFT Correspondence; Integrable Field Theories; String Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
In the recent publication [1] the spin vertex was introduced as a new approach for computing three-point functions in N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} SYM. In this note we consider the BMN limit of the spin vertex for scalar excitations and show that it reproduces the string vertex in the light-cone string field theory which describes the string interactions in the pp-wave background at the leading order of λ′ expansion. This is achieved by introducing a polynomial representation for the spin vertex. We derive the Neumann coefficients from the spin vertex at weak coupling and show they match with the Neumann coefficients from the string field theory.
引用
收藏
相关论文
共 101 条
  • [1] Jiang Y(2015)String Bits and the Spin Vertex Nucl. Phys. B 897 374-undefined
  • [2] Kostov I(1999)The large-N limit of superconformal field theories and supergravity Int. J. Theor. Phys. 38 1113-undefined
  • [3] Petrovskii A(1998)Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253-undefined
  • [4] Serban D(1998)Gauge theory correlators from noncritical string theory Phys. Lett. B 428 105-undefined
  • [5] Maldacena JM(2002)Strings in flat space and pp waves from N =4 super Yang-Mills JHEP 04 013-undefined
  • [6] Witten E(2002)A new maximally supersymmetric background of IIB superstring theory JHEP 01 047-undefined
  • [7] Gubser SS(2010)Holographic three-point functions of semiclassical states JHEP 09 030-undefined
  • [8] Klebanov IR(2010)On correlation functions of operators dual to classical spinning string states JHEP 05 030-undefined
  • [9] Polyakov AM(2011)Correlation functions of three heavy operators: the AdS contribution JHEP 12 095-undefined
  • [10] Berenstein DE(2014)HHL correlators, orbit averaging and form factors JHEP 09 050-undefined