In this paper we first prove the existence of a weak solution to a finite dimensional multivalued stochastic differential equation of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$dX_{t} +A(X_{t}) dt \ni b (t, X) dt + \sigma (t, X) dB_{t}, t \ni [0, T]$$\end{document}, where A is a maximal monotone operator, and the coefficients b and σ are continuous functionals of the state variable. The main tool used is the martingale problem approach.