Kurepa trees and spectra of Lω1,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\omega _1,\omega }$$\end{document}-sentences

被引:0
作者
Dima Sinapova
Ioannis Souldatos
机构
[1] University of Illinois at Chicago,Mathematics Department
[2] University of Detroit Mercy,Mathematics Department
关键词
Kurepa trees; Infinitary logic; Abstract elementary classes; Spectra; Amalgamation; Maximal models; Primary 03E75; 03C55; Secondary 03E35; 03C75; 03C48; 03C52;
D O I
10.1007/s00153-020-00729-4
中图分类号
学科分类号
摘要
We use set-theoretic tools to make a model-theoretic contribution. In particular, we construct a singleLω1,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\omega _1,\omega }$$\end{document}-sentence ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} that codes Kurepa trees to prove the following statements: The spectrum of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is consistently equal to [ℵ0,ℵω1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\aleph _0,\aleph _{\omega _1}]$$\end{document} and also consistently equal to [ℵ0,2ℵ1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\aleph _0,2^{\aleph _1})$$\end{document}, where 2ℵ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _1}$$\end{document} is weakly inaccessible.The amalgamation spectrum of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is consistently equal to [ℵ1,ℵω1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\aleph _1,\aleph _{\omega _1}]$$\end{document} and [ℵ1,2ℵ1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\aleph _1,2^{\aleph _1})$$\end{document}, where again 2ℵ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _1}$$\end{document} is weakly inaccessible. This is the first example of an Lω1,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\omega _1,\omega }$$\end{document}-sentence whose spectrum and amalgamation spectrum are consistently both right-open and right-closed. It also provides a positive answer to a question in Souldatos (Notre Dame J Form Log 55(4):533–551, 2014).Consistently, ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} has maximal models in finite, countable, and uncountable many cardinalities. This complements the examples given in Baldwin et al. (Arch Math Log 55(3):545–565, 2016) and Baldwin and Souldatos (Math Log Q 65(4):444–452, 2019) of sentences with maximal models in countably many cardinalities.Consistently, 2ℵ0<ℵω1<2ℵ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _0}<\aleph _{\omega _1}<2^{\aleph _1}$$\end{document} and there exists an Lω1,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\omega _1,\omega }$$\end{document}-sentence with models in ℵω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _{\omega _1}$$\end{document}, but no models in 2ℵ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _1}$$\end{document}. This relates to a conjecture by Shelah that if ℵω1<2ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _{\omega _1}<2^{\aleph _0}$$\end{document}, then any Lω1,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{\omega _1,\omega }$$\end{document}-sentence with a model of size ℵω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _{\omega _1}$$\end{document} also has a model of size 2ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _0}$$\end{document}. Our result proves that 2ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _0}$$\end{document} can not be replaced by 2ℵ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _1}$$\end{document}, even if 2ℵ0<ℵω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\aleph _0}<\aleph _{\omega _1}$$\end{document}.
引用
收藏
页码:939 / 956
页数:17
相关论文
共 20 条
  • [1] Baldwin JT(2016)The joint embedding property and maximal models Arch. Math. Log. 55 545-565
  • [2] Koerwien M(2019)Complete Math. Log. Q. 65 444-452
  • [3] Souldatos I(2013) with maximal models in multiple cardinalities Notre Dame J. Form. Log. 54 137-151
  • [4] Baldwin JT(2002)The nonabsoluteness of model existence in uncountable cardinals for J. Math. Log. 2 113-144
  • [5] Souldatos I(1992)Knight’s model, its automorphism group, and characterizing the uncountable cardinals Notre Dame J. Form. Log. 33 120-125
  • [6] Friedman S-D(2016)A model in which every Kurepa tree is thick J. Symb. Log. 81 570-583
  • [7] Hyttinen T(2012)The hanf number for amalgamation of coloring classes J. Symb. Log. 77 1011-1046
  • [8] Koerwien M(2019)-definability at uncountable regular cardinals Notre Dame J. Form. Log. 60 253-282
  • [9] Hjorth G(1993)Closed maximality principles and generalized Baire spaces J. Symb. Log. 58 1052-1070
  • [10] Jin R(2018)Trees and Fundam. Math. 243 179-193