Some new results on Lipschitz regularization for parabolic equations

被引:0
作者
Nicolas Dirr
Vinh Duc Nguyen
机构
[1] University of Cardiff,School of Mathematics
[2] Ton Duc Thang University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
来源
Journal of Evolution Equations | 2019年 / 19卷
关键词
Lipschitz regularizing effect; Nonlinear parabolic equations; Gradient bounds; Oscillation; Viscosity solutions; Additive noise;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that the bounded solution u(t, x) of the heat equation posed in RN×(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^N \times (0,T)$$\end{document} for any continuous initial condition becomes Lipschitz continuous as soon as t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0,$$\end{document} even if the initial datum is not Lipschitz continuous. We investigate this Lipschitz regularization for both strictly and degenerate parabolic equations of Hamilton–Jacobi type. We give proofs avoiding Bernstein’s method which leads to new, less restrictive conditions on the Hamiltonian, i.e., the first-order term. We discuss also whether the Lipschitz constant depends on the oscillation for the initial datum or not. Finally, some important applications of this Lipschitz regularization are presented.
引用
收藏
页码:1149 / 1166
页数:17
相关论文
共 27 条
  • [21] Lions P-L(undefined)undefined undefined undefined undefined-undefined
  • [22] Lions P-L(undefined)undefined undefined undefined undefined-undefined
  • [23] Souganidis PE(undefined)undefined undefined undefined undefined-undefined
  • [24] Ley O(undefined)undefined undefined undefined undefined-undefined
  • [25] Nguyen VD(undefined)undefined undefined undefined undefined-undefined
  • [26] Priola E(undefined)undefined undefined undefined undefined-undefined
  • [27] Porretta A(undefined)undefined undefined undefined undefined-undefined