Domination in Rose Window Graphs

被引:0
|
作者
Dušan Jokanović
Štefko Miklavič
Marina Milićević
Primož Šparl
机构
[1] University of East Sarajevo,Production and Management Faculty Trebinje
[2] University of Primorska,undefined
[3] FAMNIT,undefined
[4] University of Primorska,undefined
[5] IAM,undefined
[6] IMFM,undefined
[7] University of Ljubljana,undefined
[8] Faculty of Education,undefined
关键词
Domination number; Efficient domination; Rose window graph; Generalized Petersen graph; 05C69; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
A subset D of the vertex set of a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a dominating set for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} if each vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is either in D or has a neighbor in D. The size of a minimum cardinality dominating set of a graph is its domination number. In this paper, we initiate the study of domination in a well-known family of rather symmetric tetravalent graphs known as the Rose window graphs. We compare their domination number to the domination number of their spanning generalized Petersen subgraphs, which have been studied quite extensively in the literature.
引用
收藏
页码:509 / 526
页数:17
相关论文
共 50 条
  • [21] Domination in Circulant Graphs
    Rad, Nader Jafari
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 169 - 176
  • [22] Domination in signed graphs
    Jeyalakshmi, P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [23] DOMINATION ON COCOMPARABILITY GRAPHS
    KRATSCH, D
    STEWART, L
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (03) : 400 - 417
  • [24] Partial Domination in Graphs
    Angsuman Das
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1713 - 1718
  • [25] Domination index in graphs
    Nair, Kavya. R.
    Sunitha, M. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (10)
  • [26] Theory of Domination in Graphs
    Sinha, Deepa
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 903 - +
  • [27] Structural domination of graphs
    Bascó, G
    Tuza, Z
    ARS COMBINATORIA, 2002, 63 : 235 - 256
  • [28] On the signed domination in graphs
    Matousek, J
    COMBINATORICA, 2000, 20 (01) : 103 - 108
  • [29] Rainbow domination in graphs
    Bresar, Bostjan
    Henning, Michael A.
    Rall, Douglas F.
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (01): : 213 - 225
  • [30] Double domination in graphs
    Harary, F
    Haynes, TW
    ARS COMBINATORIA, 2000, 55 : 201 - 213