Domination in Rose Window Graphs

被引:0
|
作者
Dušan Jokanović
Štefko Miklavič
Marina Milićević
Primož Šparl
机构
[1] University of East Sarajevo,Production and Management Faculty Trebinje
[2] University of Primorska,undefined
[3] FAMNIT,undefined
[4] University of Primorska,undefined
[5] IAM,undefined
[6] IMFM,undefined
[7] University of Ljubljana,undefined
[8] Faculty of Education,undefined
关键词
Domination number; Efficient domination; Rose window graph; Generalized Petersen graph; 05C69; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
A subset D of the vertex set of a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a dominating set for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} if each vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is either in D or has a neighbor in D. The size of a minimum cardinality dominating set of a graph is its domination number. In this paper, we initiate the study of domination in a well-known family of rather symmetric tetravalent graphs known as the Rose window graphs. We compare their domination number to the domination number of their spanning generalized Petersen subgraphs, which have been studied quite extensively in the literature.
引用
收藏
页码:509 / 526
页数:17
相关论文
共 50 条
  • [11] 'ROSE WINDOW'
    GURNEY, J
    AGENDA, 1977, 15 (01): : 17 - 17
  • [12] 'ROSE WINDOW'
    TANGORRA, J
    ANTIOCH REVIEW, 1987, 45 (03): : 344 - 345
  • [13] Generalized domination and efficient domination in graphs
    Department of Mathematics, University of Wisconsin-LaCrosse, LaCrosse, WI 54601, United States
    不详
    Discrete Math, 1-3 (1-11):
  • [14] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [15] DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF GRAPHS
    SEIFTER, N
    ARS COMBINATORIA, 1994, 38 : 119 - 128
  • [16] Domination versus disjunctive domination in graphs
    Henning, Michael A.
    Marcon, Sinclair A.
    QUAESTIONES MATHEMATICAE, 2016, 39 (02) : 261 - 273
  • [17] Graphs that are simultaneously efficient open domination and efficient closed domination graphs
    Klavzar, Sandi
    Peterin, Iztok
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 613 - 621
  • [18] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [19] Unique irredundance, domination and independent domination in graphs
    Fischermann, M
    Volkmann, L
    Zverovich, I
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 190 - 200
  • [20] On Secure Domination in Graphs
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 786 - 790