Domination in Rose Window Graphs

被引:0
|
作者
Dušan Jokanović
Štefko Miklavič
Marina Milićević
Primož Šparl
机构
[1] University of East Sarajevo,Production and Management Faculty Trebinje
[2] University of Primorska,undefined
[3] FAMNIT,undefined
[4] University of Primorska,undefined
[5] IAM,undefined
[6] IMFM,undefined
[7] University of Ljubljana,undefined
[8] Faculty of Education,undefined
关键词
Domination number; Efficient domination; Rose window graph; Generalized Petersen graph; 05C69; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
A subset D of the vertex set of a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a dominating set for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} if each vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is either in D or has a neighbor in D. The size of a minimum cardinality dominating set of a graph is its domination number. In this paper, we initiate the study of domination in a well-known family of rather symmetric tetravalent graphs known as the Rose window graphs. We compare their domination number to the domination number of their spanning generalized Petersen subgraphs, which have been studied quite extensively in the literature.
引用
收藏
页码:509 / 526
页数:17
相关论文
共 50 条
  • [1] Domination in Rose Window Graphs
    Jokanovic, Dusan
    Miklavic, Stefko
    Milicevic, Marina
    Sparl, Primoz
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) : 509 - 526
  • [2] Rose Window Graphs
    Wilson, Steve
    ARS MATHEMATICA CONTEMPORANEA, 2008, 1 (01) : 7 - 19
  • [3] Stability of Rose Window graphs
    Ahanjideh, Milad
    Kovacs, Istvan
    Kutnar, Klavdija
    JOURNAL OF GRAPH THEORY, 2024, 107 (04) : 810 - 832
  • [4] The isomorphism problem for rose window graphs
    Dobson, Edward
    Kovacs, Istvan
    Miklavic, Stefko
    DISCRETE MATHEMATICS, 2014, 323 : 7 - 13
  • [5] Rose window graphs underlying rotary maps
    Kovacs, Istvan
    Kutnar, Klavdija
    Janos Ruff
    DISCRETE MATHEMATICS, 2010, 310 (12) : 1802 - 1811
  • [6] Classification of Edge-Transitive Rose Window Graphs
    Kovacs, Istvan
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF GRAPH THEORY, 2010, 65 (03) : 216 - 231
  • [7] Arc-transitive maps with underlying Rose Window graphs
    Hubard, Isabel
    Ramos-Rivera, Alejandra
    Sparl, Primoz
    JOURNAL OF GRAPH THEORY, 2021, 96 (02) : 203 - 230
  • [8] The automorphism groups of non-edge-transitive rose window graphs
    Dobson, Edward
    Kovacs, Istvan
    Miklavic, Stefko
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (01) : 63 - 75
  • [9] The 'rose window'
    Rilke, RM
    PARABOLA-MYTH TRADITION AND THE SEARCH FOR MEANING, 2006, 31 (01): : 47 - 47
  • [10] On -Domination in Graphs
    Das, Angsuman
    Laskar, Renu C.
    Rad, Nader Jafari
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 193 - 205