More on ’t Hooft loops in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} SYM

被引:0
作者
Fabrizio Pucci
机构
[1] Fakultät für Physik,
[2] Universität Bielefeld,undefined
关键词
Wilson; ’t Hooft and Polyakov loops; Extended Supersymmetry; Duality in Gauge Field Theories;
D O I
10.1007/JHEP11(2012)161
中图分类号
学科分类号
摘要
We study supersymmetric ’t Hooft loop operators in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} super Yang-Mills, generalizing the well-known circular 1/2 BPS case and investigating their S-duality properties. We derive the BPS condition for a generic line operator describing pointlike monopoles and discuss its solutions in some particular case. In particular, we present the explicit construction of the magnetic counterpart of Zarembo and DGRT Wilson loops and provide the general dyonic configurations for an abelian gauge group. The quantum definition of these supersymmetric ’t Hooft loop operators is carefully discussed and we attempt some computations to next-to-leading order in perturbation theory.
引用
收藏
相关论文
共 102 条
  • [1] Pestun V(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-undefined
  • [2] Gomis J(2012)Exact results for ’t hooft loops in gauge theories on S JHEP 05 141-undefined
  • [3] Okuda T(2012)Line operators on JHEP 04 010-undefined
  • [4] Pestun V(2001) and quantization of the Hitchin moduli space Eur. Phys. J. C 22 379-undefined
  • [5] Ito Y(1998)Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity Phys. Rev. Lett. 80 4859-undefined
  • [6] Okuda T(2002)Wilson loops in large-N field theories Nucl. Phys. B 643 157-undefined
  • [7] Taki M(2001)Supersymmetric Wilson loops J. Math. Phys. 42 2896-undefined
  • [8] Rey S-J(2000)An exact prediction of N = 4 SUSYM theory for string theory Nucl. Phys. B 582 155-undefined
  • [9] Yee J-T(2007)Wilson loops in N = 4 supersymmetric Yang-Mills theory Phys. Rev. D 76 107703-undefined
  • [10] Maldacena JM(2008)More supersymmetric Wilson loops Phys. Rev. D 77 047901-undefined