Effect Algebras as Presheaves on Finite Boolean Algebras

被引:0
|
作者
Gejza Jenča
机构
[1] Slovak University of Technology,Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry
来源
Order | 2018年 / 35卷
关键词
Effect algebra; Tensor product; Presheaf;
D O I
暂无
中图分类号
学科分类号
摘要
For an effect algebra A, we examine the category of all morphisms from finite Boolean algebras into A. This category can be described as a category of elements of a presheaf R(A) on the category of finite Boolean algebras. We prove that some properties (being an orthoalgebra, the Riesz decomposition property, being a Boolean algebra) of an effect algebra A can be characterized in terms of some properties of the category of elements of the presheaf R(A). We prove that the tensor product of effect algebras arises as a left Kan extension of the free product of finite Boolean algebras along the inclusion functor. The tensor product of effect algebras can be expressed by means of the Day convolution of presheaves on finite Boolean algebras.
引用
收藏
页码:525 / 540
页数:15
相关论文
共 50 条
  • [21] Hyper effect algebras
    Dvurecenskij, Anatolij
    Hycko, Marek
    FUZZY SETS AND SYSTEMS, 2017, 326 : 34 - 51
  • [22] Lexicographic effect algebras
    Anatolij Dvurečenskij
    Algebra universalis, 2016, 75 : 451 - 480
  • [23] Dynamic effect algebras
    Chajda, Ivan
    Kolarik, Miroslav
    MATHEMATICA SLOVACA, 2012, 62 (03) : 379 - 388
  • [24] ON TOPOLOGICAL EFFECT ALGEBRAS
    Rakhshani, M. R.
    Borzooei, R. A.
    Rezaei, G. R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 312 - 325
  • [25] Lexicographic effect algebras
    Dvurecenskij, Anatolij
    ALGEBRA UNIVERSALIS, 2016, 75 (04) : 451 - 480
  • [26] Effect Algebras with the Riesz Decomposition Property and AF C*-Algebras
    Sylvia Pulmannova
    Foundations of Physics, 1999, 29 : 1389 - 1401
  • [27] Effect algebras with compressions
    Pulmannova, Sylvia
    REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (02) : 301 - 324
  • [28] Product effect algebras
    Dvurecenskij, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (10) : 1827 - 1839
  • [29] Effect algebras which can be covered by MV-algebras
    Dvurecenskij, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (02) : 221 - 229
  • [30] Effect Algebras Which Can Be Covered by MV-Algebras
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2002, 41 : 221 - 229