Automatic PI-RADS assignment by means of formal methods

被引:0
作者
Luca Brunese
Maria Chiara Brunese
Mattia Carbone
Vincenzo Ciccone
Francesco Mercaldo
Antonella Santone
机构
[1] University of Molise,Department of Medicine and Health Sciences “Vincenzo Tiberio”
[2] Ospedale San Giovanni di Dio e Ruggi d’Aragona,Dipartimento Diagnostico per Immagini U.O.C. di Radiologia
来源
La radiologia medica | 2022年 / 127卷
关键词
Formal methods; Model checking; Radiomics; Prostate; Cancer; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:83 / 89
页数:6
相关论文
共 141 条
[11]  
Padhani AR(2010)Diagnostic value of diffusion-weighted magnetic resonance imaging (dwi) compared to fdg pet/ct for whole-body breast cancer staging Eur J Nucl Med Mol Imag 37 1077-43
[12]  
Margolis D(2012)Radiomics: the process and the challenges Magn Reson Imag 30 1234-1139
[13]  
Macura KJ(2020)Formal methods for prostate cancer gleason score and treatment prediction using radiomic biomarkers Magn Reson Imaging 66 165-617
[14]  
Haider MA(2019)Prostate gleason score detection and cancer treatment through real-time formal verification IEEE Access 7 186236-4090
[15]  
Fusco R(2019)Use-net: incorporating squeeze-and-excitation blocks into u-net for prostate zonal segmentation of multi-institutional mri datasets Neurocomputing 365 31-137
[16]  
Sansone M(2017)Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted mri using convolutional neural networks J Med Imag 4 338-884
[17]  
Petrillo A(2020)A hybrid end-to-end approach integrating conditional random fields into cnns for prostate cancer detection on mri Appl Sci 10 1127-undefined
[18]  
Hamoen Esther HJ(2018)Automated detection of clinically significant prostate cancer in mp-mri images based on an end-to-end deep neural network IEEE Trans Med Imag 37 607-undefined
[19]  
de Rooij M(2019)Classification of cancer at prostate mri: deep learning versus clinical pi-rads assessment Radiology 293 4082-undefined
[20]  
Witjes JA(2017)Machine learning-based analysis of mr radiomics can help to improve the diagnostic performance of pi-rads v2 in clinically relevant prostate cancer Eur Radiol 27 128-undefined