The cancellation of Fourier coefficients of cusp forms over different sparse sequences

被引:0
作者
Hui Xue Lao
机构
[1] Shandong Normal University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2013年 / 29卷
关键词
Fourier coefficients; cusp forms; -function; sparse sequence; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let λf(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z) ∈ Sk(Γ). In this paper, we established nontrivial estimates for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{n \leqslant x} {\lambda _f \left( {n^i } \right)\lambda _f \left( {n^j } \right),}$$\end{document} where 1 ≤ i < j ≤ 4.
引用
收藏
页码:1963 / 1972
页数:9
相关论文
共 37 条
[1]  
Chandrasekharan A(1962)Functional equations with multiple gamma-factors and the average order of arithmetical functions Ann. of Math. 76 93-136
[2]  
Narasimhan R(2004)On the complex moments of symmetric power IMRN 31 1562-1618
[3]  
Cogdell J(1974)-functions at Inst. Hautes Etudes Sci. Publ. Math. 43 29-39
[4]  
Michel P(2003) = 1 J. Math. Sci. (N. Y.) 118 4910-4917
[5]  
Deligne P(1978)La Conjecture de Weil Ann. Sci. École Norm. Sup. 11 471-552
[6]  
Fomenko O M(1982)On the behavior of automorphic Mathematika 29 278-295
[7]  
Gelbart S(1981)-functions at the center of the critical strip Amer. J. Math. 103 777-815
[8]  
Jacquet H(1981)A relation between automorphic representations of GL(2) and GL(3) Amer. J. Math. 103 499-558
[9]  
Good A(2003)The square mean of Dirichlet series associated with cusp forms J. Amer. Math. Soc. 16 139-183
[10]  
Jacquet H(2002)On Euler products and the classification of automorphic forms II Duke Math. J. 112 177-197