Two loop QCD corrections for the process pseudo-scalar Higgs → 3 partons

被引:0
作者
Pulak Banerjee
Prasanna K. Dhani
V. Ravindran
机构
[1] The Institute of Mathematical Sciences,
[2] Homi Bhaba National Institute,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
NLO Computations; QCD Phenomenology;
D O I
暂无
中图分类号
学科分类号
摘要
We present virtual contributions up to two loop level in perturbative Quantum Chromodynamic (QCD) to the decay of pseudo-scalar Higgs boson (A) to three gluons (g) and also to quark (q), anti-quark (q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}) and a gluon. With appropriate crossing, they are well suited for predicting the differential distribution of A in association with a jet in hadron colliders up to next-to-next-to-leading order (NNLO) in strong coupling constant and also for the subsequent decay of A to hadrons. We use effective field theory approach to integrate out the top quarks in the heavy top limit. The resulting theory involves two pseudo-scalar composite operators describing the interaction of A with gluons as well as with quark and anti-quark. We perform our computation in dimensional regularisation and use minimal subtraction (MS¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{MS} $$\end{document}) scheme to renormalise strong coupling constant as well as the composite operators. The ultraviolet (UV) finite amplitudes contain infrared (IR) divergences that are found to be in agreement with the predictions by Catani. For both the amplitudes namely A → ggg and A→qq¯g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A\to q\overline{q}g $$\end{document}, the leading transcendental terms at one and two loops are found to be identical to those in a three point form factor (FF) of the half-BPS operator in N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} Supersymmetric Yang Mills (SYM) theory when the QCD color factors are adjusted in a specific way. We present our results in terms of harmonic polylogs well suited for further numerical study.
引用
收藏
相关论文
共 183 条
[1]  
Fayet P(1975)Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino Nucl. Phys. B 90 104-undefined
[2]  
Fayet P(1976)Supersymmetry and Weak, Electromagnetic and Strong Interactions Phys. Lett. B 64 159-undefined
[3]  
Fayet P(1977)Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions Phys. Lett. B 69 489-undefined
[4]  
Dimopoulos S(1981)Softly Broken Supersymmetry and SU(5) Nucl. Phys. B 193 150-undefined
[5]  
Georgi H(1981)Naturalness in Supersymmetric Guts Z. Phys. C 11 153-undefined
[6]  
Sakai N(1982)Low-Energy Parameters and Particle Masses in a Supersymmetric Grand Unified Model Prog. Theor. Phys. 67 1889-undefined
[7]  
Inoue K(1984)Renormalization of Supersymmetry Breaking Parameters Revisited Prog. Theor. Phys. 71 413-undefined
[8]  
Kakuto A(1993)SUSY Higgs production at proton colliders Phys. Lett. B 318 347-undefined
[9]  
Komatsu H(2015)Pseudo-scalar Form Factors at Three Loops in QCD JHEP 11 169-undefined
[10]  
Takeshita S(2014)Drell-Yan Production at Threshold to Third Order in QCD Phys. Rev. Lett. 113 112002-undefined