Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network

被引:0
|
作者
Tomoyuki Fujioka
Kazunori Kubota
Mio Mori
Yuka Kikuchi
Leona Katsuta
Mai Kasahara
Goshi Oda
Toshiyuki Ishiba
Tsuyoshi Nakagawa
Ukihide Tateishi
机构
[1] Tokyo Medical and Dental University,Department of Radiology
[2] Tokyo Medical and Dental University,Department of Surgery, Breast Surgery
来源
关键词
Breast imaging; Ultrasound; Deep learning; Convolutional neural network; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:466 / 472
页数:6
相关论文
共 50 条
  • [31] Classification of breast masses on ultrasound shear wave elastography using convolutional neural networks
    Fujioka, Tomoyuki
    Katsuta, Leona
    Kubota, Kazunori
    Mori, Mio
    Kikuchi, Yuka
    Kato, Arisa
    Oda, Goshi
    Nakagawa, Tsuyoshi
    Kitazume, Yoshio
    Tateishi, Ukihide
    ULTRASONIC IMAGING, 2020, 42 (4-5) : 213 - 220
  • [32] Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network
    Nawaz, Majid
    Sewissy, Adel A.
    Soliman, Taysir Hassan A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (06) : 316 - 322
  • [33] Segmentation of Breast Ultrasound Images using Densely Connected Deep Convolutional Neural Network and Attention Gates
    Thirusangu, Niranjan
    Almekkawy, Mohamed
    2021 IEEE UFFC LATIN AMERICA ULTRASONICS SYMPOSIUM (LAUS), 2021,
  • [34] 3D tumor detection in automated breast ultrasound using deep convolutional neural network
    Li, Yanfeng
    Wu, Wen
    Chen, Houjin
    Cheng, Lin
    Wang, Shu
    MEDICAL PHYSICS, 2020, 47 (11) : 5669 - 5680
  • [35] Determination of mammographic breast density using a deep convolutional neural network
    Ciritsis, Alexander
    Rossi, Cristina
    de Martini, Ilaria Vittoria
    Eberhard, Matthias
    Marcon, Magda
    Becker, Anton S.
    Berger, Nicole
    Boss, Andreas
    BRITISH JOURNAL OF RADIOLOGY, 2018, 92 (1093):
  • [36] Classification of benign and malignant breast masses using entropy from nonlinear ultrasound radiofrequency signal
    Zhang Mei-Mei
    Gao Fan
    Tu Juan
    Wu Yi-Yun
    Zhang Dong
    ACTA PHYSICA SINICA, 2021, 70 (08)
  • [37] Breast Lesion Segmentation in Ultrasound Images Using Deep Convolutional Neural Networks
    Ghosh, Dipannita
    Kumar, Amish
    Ghosal, Palash
    Chowdhury, Tamal
    Sadhu, Anup
    Nandi, Debashis
    2020 IEEE CALCUTTA CONFERENCE (CALCON), 2020, : 318 - 322
  • [38] Discrimination between benign and malignant lesions of the breast using ultrasound disparity mapping
    Steinberg, BD
    Carlson, DL
    Birnbaum, JA
    MEDICAL IMAGING 2001: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2001, 4325 : 150 - 158
  • [39] Palpable breast masses:: comparison of ultrasound and mammography in differentiating malignant and benign origin
    Tarján, Z
    Tóth, G
    Kerpel-Fróniusz, A
    Galgóczy, H
    Dömötöri, Z
    Járay, B
    BRITISH JOURNAL OF SURGERY, 1998, 85 : 148 - 148
  • [40] Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion
    Byra, Michel
    Galperin, Michael
    Ojeda-Fournier, Haydee
    Olson, Linda
    O'Boyle, Mary
    Comstock, Christopher
    Andre, Michael
    MEDICAL PHYSICS, 2019, 46 (02) : 746 - 755