Comparison of Bayesian objective procedures for variable selection in linear regression

被引:0
作者
Elías Moreno
F. Javier Girón
机构
[1] Universidad de Granada,Departamento de Estadística
[2] Universidad de Málaga,Departamento de Estadística
来源
TEST | 2008年 / 17卷
关键词
Encompassing; Intrinsic priors; Linear regression; Model selection; Reference priors; 62F15; 62F25; 62B10;
D O I
暂无
中图分类号
学科分类号
摘要
In the objective Bayesian approach to variable selection in regression a crucial point is the encompassing of the underlying nonnested linear models. Once the models have been encompassed, one can define objective priors for the multiple testing problem involved in the variable selection problem.
引用
收藏
页码:472 / 490
页数:18
相关论文
共 52 条
[1]  
Atkinson AC(1978)Posterior probabilities for choosing a regression model Biometrika 65 39-48
[2]  
Berger JO(1996)The intrinsic Bayes factor for model selection and prediction J Am Stat Assoc 91 109-122
[3]  
Pericchi LR(2004)Training samples in objective Bayesian model selection Ann Stat 32 841-869
[4]  
Berger JO(1986)An analysis for unreplicated fractional factorial Technometrics 28 11-18
[5]  
Pericchi LR(2005)Intrinsic meta-analysis of contingency tables Stat Med 24 583-604
[6]  
Box GEP(2006)Objective Bayesian variable selection J Am Stat Assoc 101 157-167
[7]  
Meyer RD(1996)Prediction via orthogonalized model mixing J Am Stat Assoc 91 1197-1208
[8]  
Casella G(1993)Variable selection via Gibbs sampling J Am Stat Assoc 88 881-889
[9]  
Moreno E(1997)Approaches for variable selection Stat Sin 7 339-373
[10]  
Casella G(2006)Objective testing procedures in linear models. Calibration of the p-values Scand J Stat 33 765-784