On the finite basis problem for the monoids of triangular boolean matrices

被引:0
|
作者
Jian Rong Li
Yan Feng Luo
机构
[1] Lanzhou University,Department of Mathematics
来源
Algebra universalis | 2011年 / 65卷
关键词
Primary: 20M07; Secondary: 08B05; Finite basis problem; semigroup of triangular matrices; finite field; semigroup variety; finite semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{T}\fancyscript{B}_n}}$$\end{document} denote the submonoid of all upper triangular boolean n × n matrices. It was shown by Volkov and Goldberg that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{T}\fancyscript{B}_n}}$$\end{document} is nonfinitely based if n > 3, but the cases when n = 2, 3 remained open. In this paper, it is shown that the monoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{T}\fancyscript{B}_2}}$$\end{document} is finitely based, and a finite identity basis for the monoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{T}\fancyscript{B}_2}}$$\end{document} is given. Moreover, it is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{T}\fancyscript{B}_3}}$$\end{document} is inherently nonfinitely based. Hence, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{T}\fancyscript{B}_n}}$$\end{document} is finitely based if and only if n ≤ 2.
引用
收藏
页码:353 / 362
页数:9
相关论文
共 50 条
  • [1] On the finite basis problem for the monoids of triangular boolean matrices
    Li, Jian Rong
    Luo, Yan Feng
    ALGEBRA UNIVERSALIS, 2011, 65 (04) : 353 - 362
  • [2] Finite basis problem for involution monoids of unitriangular boolean matrices
    Wen Ting Zhang
    Yan Feng Luo
    Nan Wang
    Algebra universalis, 2020, 81
  • [3] Finite basis problem for involution monoids of unitriangular boolean matrices
    Zhang, Wen Ting
    Luo, Yan Feng
    Wang, Nan
    ALGEBRA UNIVERSALIS, 2020, 81 (01)
  • [4] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [5] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [6] The finite basis problem for Kauffman monoids
    K. Auinger
    Yuzhu Chen
    Xun Hu
    Yanfeng Luo
    M. V. Volkov
    Algebra universalis, 2015, 74 : 333 - 350
  • [7] Finite basis problem for Annular monoids with rotation
    Zhang, Wen Ting
    Han, Bin Bin
    Luo, Yan Feng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [8] Finite basis problem for Lee monoids with involution
    Gao, Meng
    Zhang, Wen-Ting
    Luo, Yan-Feng
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4258 - 4273
  • [9] Finite basis problem for Catalan monoids with involution
    Gao, Meng
    Zhang, Wen Ting
    Luo, Yan Feng
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (06) : 1161 - 1177
  • [10] THE FINITE BASIS PROBLEM FOR INVOLUTION SEMIGROUPS OF TRIANGULAR $2\times 2$ MATRICES
    Zhang, Wen Ting
    Luo, Yan Feng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) : 88 - 104