Intrinsic Covering Dimension for Nuclear C*-Algebras with Real Rank Zero

被引:0
作者
Nicola Watson
机构
[1] University of Toronto,Department of Mathematics
来源
Integral Equations and Operator Theory | 2016年 / 86卷
关键词
Nuclear C*-algebras; Covering dimension; Real rank zero; Primary 46L85; Secondary 46L35;
D O I
暂无
中图分类号
学科分类号
摘要
Alternative characterisations of nuclear dimension and decomposition rank in terms of finite dimensional subalgebras and approximate partitions of unity are given for C*-algebras with real rank zero. These characterisations aid the understanding of the two concepts, as well as the difference between them, and lead to elementary proofs of known, important results.
引用
收藏
页码:301 / 319
页数:18
相关论文
共 20 条
[1]  
Arveson W(1977)Notes on extensions of C*-algebras Duke Math. J. 44 329-355
[2]  
Brown LG(1991)C*-algebras of real rank zero J. Funct. Anal 99 131-149
[3]  
Pedersen GK(2005)Excision and a theorem of Popa J. Oper. Theory 54 3-8
[4]  
Brown NP(1980)Near inclusions of C*-algebras Acta Math. 144 249-265
[5]  
Christensen E(2012)Decomposable approximations of nuclear C*-algebras Adv. Math. 230 1029-1039
[6]  
Hirshberg I(2004)Covering dimension and quasidiagonality Internat. J. Math. 15 63-85
[7]  
Kirchberg E(1997)On local finite-dimensional approximation of C*-algebras Pac. J. Math 181 141-158
[8]  
White S(2009)Semiprojectivity for certain purely infinite C*-algebras Trans. Am. Math. Soc. 361 2805-2830
[9]  
Kirchberg E(2014)Nuclear dimension, Math. Ann. 358 729-778
[10]  
Winter W(2003)-stability, and algebraic simplicity for stably projectionless C*-algebras J. Funct. Anal. 199 535-556