Structure and magnetic properties of sintered alloys based on mechanoactivated powders Fe-Ga

被引:0
作者
Vityaz P.A. [1 ]
Kovalyova S.A. [1 ]
Lobanovskiy L.S. [2 ]
Senyut V.T. [1 ]
Grigoryeva T.F. [3 ]
Gamzeleva T.V. [4 ]
机构
[1] Joint Institute of Mechanical Engineering, National Academy of Sciences of Belarus, Minsk
[2] Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk
[3] Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk
[4] Institute of Powder Metallurgy, National Academy of Sciences of Belarus, Minsk
来源
Inorganic Materials: Applied Research | 1600年 / Maik Nauka Publishing / Springer SBM卷 / 05期
关键词
High pressures and temperatures; Mechanical activation; Mechanical composites; Microstructure; Soft magnetic materials;
D O I
10.1134/S2075113314010146
中图分类号
学科分类号
摘要
The article discusses the results of investigations into the influence of preliminary mechanical treatment of Fe-20% Ga powders on the structure of alloys produced at high pressures and temperatures. It is demonstrated that the alloys preferably inherit the phase composition of mechanical composite powders and have nanoscale structure. Magnetization curves of the alloys are determined in the temperature range of 4-300 K. © Pleiades Publishing, Ltd., 2014.
引用
收藏
页码:82 / 88
页数:6
相关论文
共 10 条
  • [1] Avvakumov E.G., Fundamental'nye Osnovy Mekhanicheskoi Aktivatsii, Mekhanosinteza i Mekhanokhimicheskikh Tekhnologii (Fundamental Foundations of Mechanical Activation, Mechanical Synthesis and Mechanochemical Technol-ogies), (2009)
  • [2] Lomovskii O.I., Mekhanokompozity-prekursory Dlya Sozdaniya Materia-lov S Novymi Svoistvami (Mechanocomposites-Precur-sors for Production Materials with New Properties), (2010)
  • [3] Alymov M.I., Construction powder nanomaterials, Kompoz. Nanostrukt., 2, pp. 5-11, (2010)
  • [4] Khmelevska T., Khmelevskyi S., Mohn P., Mag-netism and structural ordering on a BCC lattice for highly magnetostrictive Fe-Ga alloys: A coherent potential approximation study, J. Appl. Phys., 103, pp. 0739111-0739115, (2008)
  • [5] Cellogg R.A., Flatau A., Clark A.E., Wun-Fogle M., Lograsso Th., Quasi-static transduction-charac-terization of galfenol, Proc. ASME Int. Mechan. Eng. Congress, IMECE'03, Washington, (2003)
  • [6] Bush A.A., Kamentsev K.E., Meshcheryakov V.F., Fetisov Yu.K., Chashin D.V., Fetisov L.Yu., Low-frequency magnetoelectric effect in a galfenol-PZT planar composite structure, Tech. Phys., 54, pp. 1314-1320, (2009)
  • [7] Guruswamy S., Srisukhumbowornchai N., Clark A.E., Restorff J.B., Wun-Fogle M., Strong, ductile, and low-fild magnetostrictive alloys based on Fe-Ga, Scripta Mater., 43, pp. 239-244, (2000)
  • [8] Grigor'eva T.F., Kiseleva T.Yu., Kovaleva S.A., Nova-Kova A.A., Tsybulya S.V., Barinova A.P., Lyakhov N.Z., Study of the products of interaction between iron and gallium during mechanical activa-tion, Phys. Met. Metallogr., 113, pp. 575-582, (2012)
  • [9] Snyder R.L., Bunge H.J., Fiala J., Voigt-Function Model in Diffraction Line-Broadening Analysis. Microstructure Analysis from Diffraction, (1999)
  • [10] Balzar D., Audebrand N., Daymond M.R., Fitch A., Hewat A., Langford J.I., Le Bail A., Louer D., Mas-Son O., McCowan C.N., Popa N.C., Stephens P.W., Toby B.H., Size-strain line-broadening analysis of the ceria round-robin sample, J. Appl. Crystallogr., 37, pp. 911-924, (2004)