Atomistic aspects of fracture

被引:0
作者
Erik Bitzek
James R. Kermode
Peter Gumbsch
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),Department of Materials Science and Engineering, Institute I
[2] King’s College London,Department of Physics
[3] University of Warwick,Warwick Centre for Predictive Modelling, School of Engineering
[4] Fraunhofer IWM,Institute for Applied Materials (IAM)
[5] Karlsruhe Institute of Technology (KIT),undefined
来源
International Journal of Fracture | 2015年 / 191卷
关键词
Fracture; Atomistic simulations; MD; DFT; Stress-corrosion cracking; Grain boundary; Bond trapping;
D O I
暂无
中图分类号
学科分类号
摘要
Any fracture process ultimately involves the rupture of atomic bonds. Processes at the atomic scale therefore critically influence the toughness and overall fracture behavior of materials. Atomistic simulation methods including large-scale molecular dynamics simulations with classical potentials, density functional theory calculations and advanced concurrent multiscale methods have led to new insights e.g. on the role of bond trapping, dynamic effects, crack-microstructure interactions and chemical aspects on the fracture toughness and crack propagation patterns in metals and ceramics. This review focuses on atomistic aspects of fracture in crystalline materials where significant advances have been achieved over the last ten years and provides an outlook on future perspectives for atomistic modelling of fracture.
引用
收藏
页码:13 / 30
页数:17
相关论文
共 50 条
[31]   Theoretical Aspects of Fracture of Polymeric Materials [J].
Nitta, Koh-hei .
KOBUNSHI RONBUNSHU, 2016, 73 (03) :281-293
[32]   FRACTURE BLISTERS - CLINICAL AND PATHOLOGICAL ASPECTS [J].
VARELA, CD ;
VAUGHAN, TK ;
CARR, JB ;
SLEMMONS, BK .
JOURNAL OF ORTHOPAEDIC TRAUMA, 1993, 7 (05) :417-427
[33]   Morphological aspects of rubber fracture and wear [J].
Bielinski, D. M. ;
Dobrowolski, O. ;
Przybytniak, G. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (01) :55-60
[34]   Atomistic analysis of 3D fracture fingerprints of mono- and bi-crystalline diamond and gold nanostructures [J].
Molaei, Fatemeh ;
Mashhadzadeh, Amin Hamed ;
Spitas, Christos ;
Saeb, Mohammad Reza .
ENGINEERING FRACTURE MECHANICS, 2022, 263
[35]   Atomistic study of lattice trapping behavior for brittle fracture in bcc-iron [J].
Guo, Ya-Fang ;
Wang, Chong-Yu .
COMPUTATIONAL MATERIALS SCIENCE, 2007, 40 (03) :376-381
[36]   An atomistic insight into the fracture behavior of bicrystal aluminum containing twist grain boundaries [J].
Chandra, S. ;
Kumar, N. Naveen ;
Samal, M. K. ;
Chavan, V. M. ;
Raghunathan, S. .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 130 :268-281
[37]   Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion Model [J].
Buehler, Markus J. .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2022, 89 (12)
[38]   Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics [J].
Tsai, Jia-Lin ;
Tzeng, Shi-Hua ;
Tzou, Yu-Jen .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (3-4) :503-509
[39]   Atomistic investigation of deformation and fracture of individual structural components of metal matrix composites [J].
Mazdziarz, Marcin ;
Nosewicz, Szymon .
ENGINEERING FRACTURE MECHANICS, 2024, 298
[40]   INCOMPLETENESS OF SINCLAIR-TYPE CONTINUUM FLEXIBLE BOUNDARY CONDITIONS FOR ATOMISTIC FRACTURE SIMULATIONS [J].
Braun, Julian ;
Buze, Maciej .
MULTISCALE MODELING & SIMULATION, 2025, 23 (02) :711-752