A Point-Free Approach to Canonical Extensions of Boolean Algebras and Bounded Archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-Algebras

被引:0
作者
G. Bezhanishvili
L. Carai
P. Morandi
机构
[1] New Mexico State University,
[2] Università degli Studi di Salerno,undefined
关键词
Bounded archimedean ; -algebra; Gelfand duality; Boolean algebra; Stone duality; Canonical extension; Point-free topology;
D O I
10.1007/s11083-022-09609-3
中图分类号
学科分类号
摘要
Recently W. Holliday gave a choice-free construction of a canonical extension of a boolean algebra B as the boolean algebra of regular open subsets of the Alexandroff topology on the poset of proper filters of B. We make this construction point-free by replacing the Alexandroff space of proper filters of B with the free frame LB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_B$$\end{document} generated by the bounded meet-semilattice of all filters of B (ordered by reverse inclusion) and prove that the booleanization of LB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_B$$\end{document} is a canonical extension of B. Our main result generalizes this approach to the category baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{ ba \ell }$$\end{document} of bounded archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-algebras, thus yielding a point-free construction of canonical extensions in baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{ ba \ell }$$\end{document}. We conclude by showing that the algebra of normal functions on the Alexandroff space of proper archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-ideals of A is a canonical extension of A∈baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \varvec{ ba \ell }$$\end{document}, thus providing a generalization of the result of Holliday to baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{ ba \ell }$$\end{document}.
引用
收藏
页码:257 / 287
页数:30
相关论文
共 50 条
[42]   Orthogonal-gradings on H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebras [J].
Antonio J. Calderón ;
Cristina Draper ;
Cándido Martín ;
Daouda Ndoye .
Mediterranean Journal of Mathematics, 2018, 15 (1)
[44]   On the power-set Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-algebras [J].
Shengwei Han ;
Bin Zhao .
Semigroup Forum, 2016, 92 (1) :214-227
[46]   Family of Finite Blaschke Products in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-Algebras [J].
T. A. Grigoryan ;
A. Yu. Kuznetsova .
Mathematical Notes, 2025, 117 (3) :402-412
[47]   Superstability of an Exponential Equation in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{C^*}}$$\end{document}-Algebras [J].
Gwang Hui Kim ;
Choonkil Park .
Results in Mathematics, 2015, 67 (1-2) :197-205
[48]   Convolution Type C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}^*$$\end{document}-Algebras [J].
Kourosh Nourouzi ;
Ali Reza .
Bulletin of the Iranian Mathematical Society, 2020, 46 (3) :777-798
[49]   Numerical radius orthogonality in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras [J].
Ali Zamani ;
Paweł Wójcik .
Annals of Functional Analysis, 2020, 11 (4) :1081-1092
[50]   Nikodym boundedness property for webs in σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-algebras [J].
S. López-Alfonso ;
J. Mas ;
S. Moll .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 (2) :711-722