A Point-Free Approach to Canonical Extensions of Boolean Algebras and Bounded Archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-Algebras

被引:0
作者
G. Bezhanishvili
L. Carai
P. Morandi
机构
[1] New Mexico State University,
[2] Università degli Studi di Salerno,undefined
关键词
Bounded archimedean ; -algebra; Gelfand duality; Boolean algebra; Stone duality; Canonical extension; Point-free topology;
D O I
10.1007/s11083-022-09609-3
中图分类号
学科分类号
摘要
Recently W. Holliday gave a choice-free construction of a canonical extension of a boolean algebra B as the boolean algebra of regular open subsets of the Alexandroff topology on the poset of proper filters of B. We make this construction point-free by replacing the Alexandroff space of proper filters of B with the free frame LB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_B$$\end{document} generated by the bounded meet-semilattice of all filters of B (ordered by reverse inclusion) and prove that the booleanization of LB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_B$$\end{document} is a canonical extension of B. Our main result generalizes this approach to the category baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{ ba \ell }$$\end{document} of bounded archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-algebras, thus yielding a point-free construction of canonical extensions in baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{ ba \ell }$$\end{document}. We conclude by showing that the algebra of normal functions on the Alexandroff space of proper archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-ideals of A is a canonical extension of A∈baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \varvec{ ba \ell }$$\end{document}, thus providing a generalization of the result of Holliday to baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{ ba \ell }$$\end{document}.
引用
收藏
页码:257 / 287
页数:30
相关论文
共 50 条
[32]   KSGNS Type Constructions for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Completely Positive Maps on Krein C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-Modules [J].
Mohammad Sal Moslehian ;
Maria Joiţa ;
Un Cig Ji .
Complex Analysis and Operator Theory, 2016, 10 (3) :617-638
[35]   Invertibility Criteria in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{C^*}}$$\end{document}-algebras of Functional Operators with Shifts and PQC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{PQC}}$$\end{document} Coefficients [J].
M. A. Bastos ;
C. A. Fernandes ;
Yu. I. Karlovich .
Integral Equations and Operator Theory, 2019, 91 (3)
[36]   Nonlinear Maps Preserving the Mixed Type Product (M⋄N∘W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M\diamond N \circ W)$$\end{document} on ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Algebras [J].
Mohammad Aslam Siddeeque ;
Raof Ahmad Bhat ;
Abbas Hussain Shikeh .
Iranian Journal of Science, 2024, 48 (5) :1307-1312
[38]   Anti fuzzy filters of CI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CI$$\end{document}-algebras [J].
Rajab Ali Borzooei ;
Arsham Borumand Saeid ;
Akbar Rezaei ;
Reza Ameri .
Afrika Matematika, 2014, 25 (4) :1197-1210