On the 3-form formulation of axion potentials from D-brane instantons

被引:0
作者
Eduardo García-Valdecasas
Angel Uranga
机构
[1] Instituto de Física Teórica UAM-CSIC,Departamento de Física Teórica
[2] Universidad Autónoma de Madrid,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
D-branes; Flux compactifications; Gauge-gravity correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.
引用
收藏
相关论文
共 158 条
[41]  
Hebecker A(2013)Zp charged branes in flux compactifications JHEP 04 138-undefined
[42]  
Rompineve F(2011)RR photons JHEP 09 110-undefined
[43]  
Westphal A(2007)Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models Nucl. Phys. B 771 113-undefined
[44]  
Hebecker A(2007)Neutrino Majorana masses from string theory instanton effects JHEP 03 052-undefined
[45]  
Moritz J(2007)Stringy instantons and quiver gauge theories JHEP 05 024-undefined
[46]  
Westphal A(2009)D-brane instantons in Type II orientifolds Ann. Rev. Nucl. Part. Sci. 59 269-undefined
[47]  
Witkowski LT(2007)From ten to four and back again: how to generalize the geometry JHEP 08 059-undefined
[48]  
Baume F(2008)Warped generalized geometry compactifications, effective theories and non-perturbative effects Fortsch. Phys. 56 862-undefined
[49]  
Palti E(2012)Axion monodromy in a model of holographic gluodynamics JHEP 02 053-undefined
[50]  
Heidenreich B(2011)Simple exercises to flatten your potential Phys. Rev. D 84 026011-undefined