Solving Multi-linear Systems with M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-Tensors

被引:1
作者
Weiyang Ding
Yimin Wei
机构
[1] Fudan University,School of Mathematical Sciences
[2] Fudan University,School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences
关键词
Multi-linear system; Triangular system; -tensor; Nonnegative tensor; Nonnegative solution ; Jacobi method; Gauss–Seidel method; Newton method; Inverse iteration; 15A48; 15A69; 65F10; 65H10; 65N22;
D O I
10.1007/s10915-015-0156-7
中图分类号
学科分类号
摘要
This paper is concerned with solving some structured multi-linear systems, especially focusing on the equations whose coefficient tensors are M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors, or called M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equations for short. We prove that a nonsingular M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equation with a positive right-hand side always has a unique positive solution. Several iterative algorithms are proposed for solving multi-linear nonsingular M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equations, generalizing the classical iterative methods and the Newton method for linear systems. Furthermore, we apply the M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equations to some nonlinear differential equations and the inverse iteration for spectral radii of nonnegative tensors.
引用
收藏
页码:689 / 715
页数:26
相关论文
共 66 条
  • [51] Qi L(undefined)undefined undefined undefined undefined-undefined
  • [52] Yang Q(undefined)undefined undefined undefined undefined-undefined
  • [53] Yang Y(undefined)undefined undefined undefined undefined-undefined
  • [54] Yang Y(undefined)undefined undefined undefined undefined-undefined
  • [55] Yang Q(undefined)undefined undefined undefined undefined-undefined
  • [56] Zhang L(undefined)undefined undefined undefined undefined-undefined
  • [57] Qi L(undefined)undefined undefined undefined undefined-undefined
  • [58] Zhang L(undefined)undefined undefined undefined undefined-undefined
  • [59] Qi L(undefined)undefined undefined undefined undefined-undefined
  • [60] Xu Y(undefined)undefined undefined undefined undefined-undefined