Solving Multi-linear Systems with M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-Tensors

被引:1
作者
Weiyang Ding
Yimin Wei
机构
[1] Fudan University,School of Mathematical Sciences
[2] Fudan University,School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences
关键词
Multi-linear system; Triangular system; -tensor; Nonnegative tensor; Nonnegative solution ; Jacobi method; Gauss–Seidel method; Newton method; Inverse iteration; 15A48; 15A69; 65F10; 65H10; 65N22;
D O I
10.1007/s10915-015-0156-7
中图分类号
学科分类号
摘要
This paper is concerned with solving some structured multi-linear systems, especially focusing on the equations whose coefficient tensors are M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors, or called M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equations for short. We prove that a nonsingular M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equation with a positive right-hand side always has a unique positive solution. Several iterative algorithms are proposed for solving multi-linear nonsingular M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equations, generalizing the classical iterative methods and the Newton method for linear systems. Furthermore, we apply the M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-equations to some nonlinear differential equations and the inverse iteration for spectral radii of nonnegative tensors.
引用
收藏
页码:689 / 715
页数:26
相关论文
共 66 条
  • [1] Amann H(1976)Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces SIAM Rev. 18 620-709
  • [2] Aubry P(1999)On the theories of triangular sets J. Symb. Comput. 28 105-124
  • [3] Lazard D(1999)Triangular sets for solving polynomial systems: a comparative implementation of four methods J. Symb. Comput. 28 125-154
  • [4] Maza MM(1999)Bounds for the entries of matrix functions with applications to preconditioning BIT 39 417-438
  • [5] Aubry P(2014)The inverse, rank and product of tensors Linear Algebra Appl. 446 269-280
  • [6] Maza MM(2014)On the decay of the inverse of matrices that are sum of Kronecker products Linear Algebra Appl. 452 21-39
  • [7] Benzi M(2013)A survey on the spectral theory of nonnegative tensors Numer. Linear Algebra Appl. 20 891-912
  • [8] Golub GH(2011)Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors SIAM J. Matrix Anal. Appl. 32 806-819
  • [9] Bu C(2012)Algorithms for computing triangular decomposition of polynomial systems J. Symb. Comput. 47 610-642
  • [10] Zhang X(2013)-tensors and nonsingular Linear Algebra Appl. 439 3264-3278