Local saddle point and a class of convexification methods for nonconvex optimization problems

被引:0
作者
Tao Li
Yanjun Wang
Zhian Liang
Panos M. Pardalos
机构
[1] Shanghai University of Finance & Economics,Department of Applied Mathematics
[2] University of Gainesville,Department of Industrial and Systems Engineering
来源
Journal of Global Optimization | 2007年 / 38卷
关键词
Nonconvex optimization; Local saddle point; Convexification; Local convexity;
D O I
暂无
中图分类号
学科分类号
摘要
A class of general transformation methods are proposed to convert a nonconvex optimization problem to another equivalent problem. It is shown that under certain assumptions the existence of a local saddle point or local convexity of the Lagrangian function of the equivalent problem (EP) can be guaranteed. Numerical experiments are given to demonstrate the main results geometrically.
引用
收藏
页码:405 / 419
页数:14
相关论文
共 5 条
[1]  
Wolfe P.(1961)A duality theorem for nonlinear programming Q. Appl. Math. 19 239-244
[2]  
Li D.(1995)Zero Duality gap for a class of nonconvex optimization problems J. Optim. Theory Appl. 85 309-324
[3]  
Xu Z.K.(1997)Local saddle points and convexification for nonconvex optimization problems J. Optim. Theory Appl. 94 739-746
[4]  
Li D.(2000)Local convexification of Lagrangian function in nonconvex optimization J. Optim. Theory Appl. 104 109-120
[5]  
Sun X.L.(undefined)undefined undefined undefined undefined-undefined