On the stochastic SIS epidemic model in a periodic environment

被引:0
作者
Nicolas Bacaër
机构
[1] IRD (Institut de Recherche pour le Développement),
[2] UMMISCO,undefined
[3] Université Paris 6,undefined
[4] UMMISCO,undefined
来源
Journal of Mathematical Biology | 2015年 / 71卷
关键词
Hamilton–Jacobi equation; Epidemic model; Extinction; Periodic environment; 35F21; 60J80; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In the stochastic SIS epidemic model with a contact rate a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}, a recovery rate b<a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<a$$\end{document}, and a population size N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, the mean extinction time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is such that (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to c=b/a-1-log(b/a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=b/a-1-\log (b/a)$$\end{document} as N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} grows to infinity. This article considers the more realistic case where the contact rate a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a periodic function whose average is bigger than b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}. Then (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to a new limit C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}, which is linked to a time-periodic Hamilton–Jacobi equation. When a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a cosine function with small amplitude or high (resp. low) frequency, approximate formulas for C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} can be obtained analytically following the method used in Assaf et al. (Phys Rev E 78:041123, 2008). These results are illustrated by numerical simulations.
引用
收藏
页码:491 / 511
页数:20
相关论文
共 50 条
  • [41] A periodic epidemic model in a patchy environment
    Zhang, Fang
    Zhao, Xiao-Qiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 496 - 516
  • [42] Longtime characterization for the general stochastic epidemic SIS model under regime-switching
    Nguyen Dinh Phu
    O'Regan, Donal
    Tran Dinh Tuong
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2020, 38
  • [43] Stochastic dynamics of an SIS epidemic on networks
    Jing, Xiaojie
    Liu, Guirong
    Jin, Zhen
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 84 (06)
  • [44] An SIS epidemic model in a patchy environment with pulse vaccination and quarantine
    Yang, Jiangtao
    Yang, Zhichun
    Chen, Yuming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [45] An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks
    Sun, Meici
    Liu, Qiming
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6790 - 6805
  • [46] Threshold dynamics of a stochastic SIS epidemic model with nonlinear incidence rate
    Liu, Qun
    Jiang, Daqing
    Hayat, Tasawar
    Alsaedi, Ahmed
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [47] The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence
    Wen, Buyu
    Rifhat, Ramziya
    Teng, Zhidong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 524 : 258 - 271
  • [48] ANALYSIS OF A STOCHASTIC SIS EPIDEMIC MODEL WITH TRANSPORT-RELATED INFECTION
    Liu, Rong
    Liu, Guirong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1296 - 1321
  • [49] The effect of a generalized nonlinear incidence rate on the stochastic SIS epidemic model
    Lahrouz, Aadil
    Settati, Adel
    El Fatini, Mohamed
    Tridane, Abdessamad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 1137 - 1146
  • [50] AN ALMOST PERIODIC EPIDEMIC MODEL IN A PATCHY ENVIRONMENT
    Wang, Bin-Guo
    Li, Wan-Tong
    Qiang, Lizhong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 271 - 289