On the stochastic SIS epidemic model in a periodic environment

被引:0
作者
Nicolas Bacaër
机构
[1] IRD (Institut de Recherche pour le Développement),
[2] UMMISCO,undefined
[3] Université Paris 6,undefined
[4] UMMISCO,undefined
来源
Journal of Mathematical Biology | 2015年 / 71卷
关键词
Hamilton–Jacobi equation; Epidemic model; Extinction; Periodic environment; 35F21; 60J80; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In the stochastic SIS epidemic model with a contact rate a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}, a recovery rate b<a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<a$$\end{document}, and a population size N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, the mean extinction time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is such that (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to c=b/a-1-log(b/a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=b/a-1-\log (b/a)$$\end{document} as N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} grows to infinity. This article considers the more realistic case where the contact rate a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a periodic function whose average is bigger than b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}. Then (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to a new limit C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}, which is linked to a time-periodic Hamilton–Jacobi equation. When a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a cosine function with small amplitude or high (resp. low) frequency, approximate formulas for C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} can be obtained analytically following the method used in Assaf et al. (Phys Rev E 78:041123, 2008). These results are illustrated by numerical simulations.
引用
收藏
页码:491 / 511
页数:20
相关论文
共 50 条
  • [31] Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates
    Ning Gao
    Yi Song
    Xinzeng Wang
    Jianxin Liu
    Advances in Difference Equations, 2019
  • [32] The persistence and extinction of a stochastic SIS epidemic model with Logistic growth
    Liu, Jiamin
    Chen, Lijuan
    Wei, Fengying
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [33] Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates
    Gao, Ning
    Song, Yi
    Wang, Xinzeng
    Liu, Jianxin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [34] Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps
    Ge, Qing
    Ji, Guilin
    Xu, Jiabo
    Fan, Xiaolin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 1120 - 1127
  • [35] Asymptotic behavior of a multigroup SIS epidemic model with stochastic perturbation
    Fu, Jing
    Han, Qixing
    Lin, Yuguo
    Jiang, Daqing
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [36] The persistence and extinction of a stochastic SIS epidemic model with Logistic growth
    Jiamin Liu
    Lijuan Chen
    Fengying Wei
    Advances in Difference Equations, 2018
  • [37] A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL WITH REGIME SWITCHING
    Cai, Siyang
    Cai, Yongmei
    Mao, Xuerong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (09): : 4887 - 4905
  • [38] The dynamics and application of a stochastic delayed SIS epidemic model with vaccination
    Zhang, Xiao-Bing
    Liu, Rui-Jie
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (02) : 304 - 327
  • [39] A PERIODIC EPIDEMIC MODEL WITH AGE STRUCTURE IN A PATCHY ENVIRONMENT
    Liu, Xiuxiang
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (06) : 1896 - 1917
  • [40] The Dynamical Behaviors in a Stochastic SIS Epidemic Model with Nonlinear Incidence
    Rifhat, Ramziya
    Ge, Qing
    Teng, Zhidong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016