Time-Dependent Generalized Nash Equilibrium Problem

被引:0
作者
John Cotrina
Javier Zúñiga
机构
[1] Universidad del Pacífico,
来源
Journal of Optimization Theory and Applications | 2018年 / 179卷
关键词
Generalized Nash equilibrium problem; Infinite-dimensional strategy spaces; Coerciveness; Generalized convexity; Abstract economy; 91B55; 91B50;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an existence result for the time-dependent generalized Nash equilibrium problem under generalized convexity without neither a quasi-variational inequality reformulation nor a quasi-equilibrium problem reformulation. Furthermore, an application to the time-dependent abstract economy is considered.
引用
收藏
页码:1054 / 1064
页数:10
相关论文
共 29 条
[1]  
Aussel D(2016)Evolutionary variational inequality formulation of the generalized Nash equilibrium problem J. Optim. Theory Appl. 169 74-90
[2]  
Gupta R(2015)An existence result for quasiequilibrium problems in separable Banach spaces J. Math. Anal. Appl. 425 85-95
[3]  
Mehra A(2010)Nash equilibria of generalized games in normed spaces without upper semicontinuity J. Global Optim. 46 509-519
[4]  
Castellani M(2018)Evolutionary quasivariational inequality for a production economy Nonlinear Anal. Real World Appl. 40 328-336
[5]  
Giuli M(2009)Quasivariational inequalities for a dynamic competitive economic equilibrium problem J. Inequal Appl. 2009 519,623-314
[6]  
Cubiotti P(2012)Evolutionary variational formulation for oligopolistic market equilibrium problems with production excesses J. Optim. Theory Appl. 155 288-210
[7]  
Yao JC(2007)Generalized Nash equilibrium problems 4OR 5 173-111
[8]  
Donato M(1987)Equilibria in noncooperative models of competition J. Econ. Theory 41 96-791
[9]  
Milasi M(1984)Multivalued mappings J. Soviet Math. 24 719-1494
[10]  
Vitanza C(2017)Quasi-variational inequality problems with non-compact valued constraint maps J. Math. Anal. Appl. 456 1482-undefined