Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images

被引:0
作者
Yu Xin Yang
Mei Sian Chong
Laura Tay
Suzanne Yew
Audrey Yeo
Cher Heng Tan
机构
[1] Tan Tock Seng Hospital,Institute of Geriatrics and Active Ageing
[2] Tan Tock Seng Hospital,Department of Geriatric Medicine
[3] Tan Tock Seng Hospital,Department of Diagnostic Radiology
来源
Magnetic Resonance Materials in Physics, Biology and Medicine | 2016年 / 29卷
关键词
Body composition; MRI; Image segmentation; Machine learning; Dixon sequence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:723 / 731
页数:8
相关论文
共 139 条
  • [1] Wells JCK(2006)Measuring body composition Arch Dis Child 91 612-617
  • [2] Fewtrell MS(1999)Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men Am J Clin Nutr 69 373-380
  • [3] Do Lee C(2006)Decreased muscle strength and quality in older adults with type 2 diabetes. The health, aging, and body composition study Diabetes 55 1813-1818
  • [4] Blair SN(2009)Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies Lancet 373 1083-1096
  • [5] Jackson AS(2011)National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9· 1 million participants Lancet 377 557-567
  • [6] Park SW(2015)Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity Clin Interv Aging 10 605-609
  • [7] Goodpaster BH(2012)Sarcopenia in the elderly: basic and clinical issues Geriatr Gerontol Int 12 388-396
  • [8] Strotmeyer ES(2008)Dixon techniques for water and fat imaging J Magn Reson Imaging 28 543-558
  • [9] de Rekeneire N(2006)Accurate quantification of visceral adipose tissue (VAT) using water-saturation MRI and computer segmentation: preliminary results J Magn Reson Imaging 23 736-741
  • [10] Harris TB(2012)Automated quantification of muscle and fat in the thigh from water-, fat-, and nonsuppressed MR images J Magn Reson Imaging 35 1152-1161