Studying nighttime nitric oxide emission at 5.3 μm during the geomagnetic storm in the Earth’s ionosphere

被引:0
|
作者
Abdelaaziz Bouziane
Mohammed Amin Ferdi
Mourad Djebli
机构
[1] USTHB,Faculty of Physics, Theoretical Physics Laboratory
来源
Astrophysics and Space Science | 2022年 / 367卷
关键词
Ionosphere; Geomagnetic storm; vibrational emission;
D O I
暂无
中图分类号
学科分类号
摘要
The nighttime NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$NO$\end{document} 5.3 μm emission at Irkutsk location is studied during the November 20, 2003, geomagnetic storm by using a coupled 1-D Boltzmann kinetic-fluid model, to calculate densities of the major ions: O2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O_{2}^{+}$\end{document}; N2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{2}^{+}$\end{document}; NO+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$NO^{+}$\end{document}; O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O^{+}$\end{document}, nitrogen atoms: N(4S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N(^{4}S)$\end{document}; N(2D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N(^{2}D)$\end{document}, and vibrationally excited levels: NO(v≤7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$NO(v \leq 7)$\end{document}, in the thermosphere between 100 and 200 km. By considering chemical reactions of neutrals and ions species in addition to molecular diffusion and an updated reaction rate coefficients, a good agreement is seen between numerical simulation and SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) measurements of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$NO$\end{document} 5.3 μm volume emission rate, compared to models based on photochemical equilibrium assumption.
引用
收藏
相关论文
共 16 条
  • [1] Studying nighttime nitric oxide emission at 5.3 μm during the geomagnetic storm in the Earth's ionosphere
    Bouziane, Abdelaaziz
    Amin Ferdi, Mohammed
    Djebli, Mourad
    ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (01)
  • [2] Simulation of the electric field in Earth’s ionosphere during a geomagnetic storm
    V. V. Klimenko
    R. Yu. Luk’yanova
    M. V. Klimenko
    Russian Journal of Physical Chemistry B, 2013, 7 : 620 - 631
  • [3] Simulation of the electric field in Earth's ionosphere during a geomagnetic storm
    Klimenko, V. V.
    Luk'yanova, R. Yu.
    Klimenko, M. V.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 7 (05) : 620 - 631
  • [4] Nitric oxide cooling emission during geomagnetic storm: Case studies
    Bag, Tikemani
    Barman, Rahul
    Das, Sukanya A.
    Sivakumar, V.
    Singh, Vir
    ADVANCES IN SPACE RESEARCH, 2024, 73 (01) : 747 - 757
  • [5] Response of NO 5.3 μm Emission to the Geomagnetic Storm on 24 April 2023
    Liu, Hongshan
    Gao, Hong
    Li, Zheng
    Xu, Jiyao
    Bai, Weihua
    Sun, Longchang
    Li, Zhongmu
    REMOTE SENSING, 2024, 16 (19)
  • [6] Disturbance dynamo, prompt penetration electric field and overshielding in the Earth's ionosphere during geomagnetic storm
    Klimenko, M. V.
    Klimenko, V. V.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2012, 90-91 : 146 - 155
  • [7] Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015
    Li, Zheng
    Sun, Meng
    Li, Jingyuan
    Zhang, Kedeng
    Zhang, Hua
    Xu, Xiaojun
    Zhao, Xinhua
    UNIVERSE, 2022, 8 (04)
  • [8] Local Time Hemispheric Asymmetry in Nitric Oxide Radiative Emission During Geomagnetic Activity
    Bag, Tikemani
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (11) : 9669 - 9681
  • [9] Vertical plasma transport in the ionosphere over Irkutsk during St. Patrick's Day geomagnetic storm: Observations and modeling
    Ratovsky, Konstantin
    Klimenko, Maxim
    Vasilyev, Roman
    Klimenko, Vladimir
    Podlesnyi, Aleksey
    ADVANCES IN SPACE RESEARCH, 2021, 67 (01) : 122 - 132
  • [10] Response Time of Joule Heating Rate and Nitric Oxide Cooling Emission During Geomagnetic Storms: Correlated Ground-Based and Satellite Observations
    Bag, Tikemani
    Ogawa, Y.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2024, 129 (02)