Some Lambert Series Expansions of Products of Theta Functions

被引:0
作者
Kenneth S. Williams
机构
[1] Carleton University,Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics
来源
The Ramanujan Journal | 1999年 / 3卷
关键词
theta functions; Lambert series; binary quadratic forms;
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a complex number satisfying |q| < 1. The theta function φ(q) is defined by φ(q) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\nolimits_{x = - \infty }^\infty {q^{x^2 } }$$ \end{document}. Ramanujan has given a number of Lambert series expansions such as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\phi (q)\phi (q^2 ) = 1 - 2\sum\limits_{n = 1}^\infty {\frac{{( - 1)^{n(n + 1)/2} q^{2n - 1} }}{{1 - q^{2n - 1} }}}$$ \end{document} A formula is proved which includes this and other expansions as special cases.
引用
收藏
页码:367 / 384
页数:17
相关论文
共 50 条
  • [41] Permutation symmetry for theta functions
    Carlson, B. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (01) : 42 - 48
  • [42] On Faltings parabolic theta functions
    Amrutiya, Sanjay
    ARCHIV DER MATHEMATIK, 2016, 106 (03) : 229 - 235
  • [43] Theta functions of superelliptic curves
    Beshaj, Lubjana
    Elezi, Artur
    Shaska, Tony
    ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS, 2015, 41 : 47 - 69
  • [44] Heegner zeros of theta functions
    Jimenez-Urroz, J
    Yang, TH
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) : 4137 - 4149
  • [45] Theta Functions and Brownian Motion
    Tyrone E. Duncan
    Journal of Theoretical Probability, 2021, 34 : 81 - 89
  • [46] On Faltings parabolic theta functions
    Sanjay Amrutiya
    Archiv der Mathematik, 2016, 106 : 229 - 235
  • [47] Theta Functions and Brownian Motion
    Duncan, Tyrone E.
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) : 81 - 89
  • [48] IRRATIONALITY OF LAMBERT SERIES ASSOCIATED WITH A PERIODIC SEQUENCE
    Luca, Florian
    Tachiya, Yohei
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 623 - 636
  • [49] Factorization theorems for generalized Lambert series and applications
    Merca, Mircea
    Schmidt, Maxie D.
    RAMANUJAN JOURNAL, 2020, 51 (02) : 391 - 419
  • [50] Proofs for two Lambert series identities of Gosper
    Bing He
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115