Some Lambert Series Expansions of Products of Theta Functions

被引:0
作者
Kenneth S. Williams
机构
[1] Carleton University,Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics
来源
The Ramanujan Journal | 1999年 / 3卷
关键词
theta functions; Lambert series; binary quadratic forms;
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a complex number satisfying |q| < 1. The theta function φ(q) is defined by φ(q) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\nolimits_{x = - \infty }^\infty {q^{x^2 } }$$ \end{document}. Ramanujan has given a number of Lambert series expansions such as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\phi (q)\phi (q^2 ) = 1 - 2\sum\limits_{n = 1}^\infty {\frac{{( - 1)^{n(n + 1)/2} q^{2n - 1} }}{{1 - q^{2n - 1} }}}$$ \end{document} A formula is proved which includes this and other expansions as special cases.
引用
收藏
页码:367 / 384
页数:17
相关论文
共 50 条
  • [31] The Lambert series factorization theorem
    Mircea Merca
    The Ramanujan Journal, 2017, 44 : 417 - 435
  • [32] Theta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjecture
    Langer, Robin
    Schlosser, Michael J.
    Warnaar, S. Ole
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [33] Quantum Super Theta Vectors and Theta Functions
    Kim, Hoil
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (01): : 249 - 256
  • [34] Lambert series and Liouville's identities
    Alaca, A.
    Alaca, S.
    McAfee, E.
    Williams, K. S.
    DISSERTATIONES MATHEMATICAE, 2007, (445) : 5 - 72
  • [35] Lambert series and conjugacy classes in GL
    Merca, Mircea
    DISCRETE MATHEMATICS, 2017, 340 (09) : 2223 - 2233
  • [36] Some new Eisenstein series containing the Borweins' cubic theta functions and convolution sum i+4j=nΣσ(i)σ(j)
    Shruthi
    Kumar, B. R. Srivatsa
    AFRIKA MATEMATIKA, 2020, 31 (5-6) : 971 - 982
  • [37] On Uniformly Starlike Functions with Respect to Symmetrical Points Involving the Mittag-Leffler Function and the Lambert Series
    Salah, Jamal
    SYMMETRY-BASEL, 2024, 16 (05):
  • [38] Slice Monogenic Theta Series
    Colombo, Fabrizio
    Krausshar, Rolf Soeren
    Sabadini, Irene
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (06) : 2039 - 2071
  • [39] ON SOME NEW MIXED MODULAR EQUATIONS INVOLVING RAMANUJAN'S THETA-FUNCTIONS
    Naika, M. S. Mahadeva
    Chandankumar, S.
    Harish, M.
    MATEMATICKI VESNIK, 2014, 66 (03): : 283 - 293
  • [40] A study on ratio of the Θ-Theta functions
    Kültür, MN
    Kaplan, A
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) : 353 - 358