Multipartite quantum systems and symplectic toric manifolds

被引:0
|
作者
Hoshang Heydari
机构
[1] Stockholm university,Physics Department
来源
关键词
Multipartite quantum systems; Symplectic toric manifolds; Quantum entanglement; Quantum information;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the geometrical structures of multi-qubit states based on symplectic toric manifolds. After a short review of symplectic toric manifolds, we discuss the space of a single quantum state in terms of these manifolds. We also investigate entangled multipartite states based on moment map and Delzant’s construction of toric manifolds and algebraic toric varieties.
引用
收藏
页码:257 / 269
页数:12
相关论文
共 50 条
  • [31] On the quantum homology algebra of toric Fano manifolds
    Yaron Ostrover
    Ilya Tyomkin
    Selecta Mathematica, 2009, 15 : 121 - 149
  • [32] On the quantum homology algebra of toric Fano manifolds
    Ostrover, Yaron
    Tyomkin, Ilya
    SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (01): : 121 - 149
  • [33] Quantum correlations in multipartite quantum systems
    Jafarizadeh, M. A.
    Heshmati, A., I
    Karimi, N.
    Yahyavi, M.
    EPL, 2018, 121 (05)
  • [34] Translated points for contactomorphisms of prequantization spaces over monotone symplectic toric manifolds
    Tervil, Brian
    JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (06) : 1421 - 1493
  • [35] Symplectic geometry in Frobenius manifolds and quantum cohomology
    Audin, M
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 25 (1-2) : 183 - 204
  • [36] SEPARABILITY OF MULTIPARTITE QUANTUM SYSTEMS
    Li, Ming
    Jing, Wang
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 69 (01) : 103 - 111
  • [37] Quantum coherence in multipartite systems
    Yao, Yao
    Xiao, Xing
    Ge, Li
    Sun, C. P.
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [38] On the Quantum Homology of Real Lagrangians in Fano Toric Manifolds
    Haug, Luis
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (14) : 3171 - 3220
  • [39] Toric symplectic stacks
    Hoffman, Benjamin
    ADVANCES IN MATHEMATICS, 2020, 368
  • [40] Canonical bases for the equivariant cohomology and K-theory rings of symplectic toric manifolds
    Pabiniak, M.
    Sabatini, S.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (04) : 1117 - 1165