Strongly amenable involutive representations of involutive Banach algebras

被引:0
作者
Fatemeh Akhtari
Rasoul Nasr-Isfahani
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Positivity | 2014年 / 18卷
关键词
Banach ; -algebra; Character; Positive functional ; -representation; State; Strongly amenable; Primary 43A07; 46K05; 46K10; Secondary 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A }$$\end{document} be a Banach ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-algebra and let φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be a nonzero self-adjoint character on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A }$$\end{document}. For a  ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-representation π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A }$$\end{document} on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H }$$\end{document}, we introduce and study strong φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-amenability of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} in terms of certain states on the von Neumann algebra of bounded operators on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H }$$\end{document}. We then give some characterizations of this notion in terms of certain positive functionals on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A }$$\end{document}. We finally investigate some hereditary properties of strong φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-amenability of Banach algebras.
引用
收藏
页码:395 / 412
页数:17
相关论文
共 30 条
[1]  
Bekka MA(1990)Amenable unitary representations of locally compact groups Invent. Math. 100 383-401
[2]  
Chou C.(2001)Vector-value invariant means on spaces of bounded operation asociated to a locally compact group Ill. J. Math. 45 581-602
[3]  
Lau A.T.(2013)Common fixed point properties and amenability of a class of Banach algebras J. Math. Anal. Appl. 402 536-544
[4]  
Desaulniers S(2013)Some notions of amenability for certain products of Banach algebras Colloq. Math. 130 147-157
[5]  
Nasr-Isfahani R(2009)On character amenable Banach algebras Stud. Math. 193 53-78
[6]  
Nemati M(2008)On Math. Proc. Cambr. Philos. Soc. 144 85-96
[7]  
Ghaderi E(2008)-amenability of Banach algebras J. Math. Anal. Appl. 344 942-955
[8]  
Nasr-Isfahani R(1983)On character amenability of Banach algebras Fund. Math. 118 161-175
[9]  
Nemati M(1987)Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups Colloq. Math. 51 195-205
[10]  
Hu Z(1988)Uniformly continuous functionals on Banach algebras Proc. Am. Math. Soc. 102 581-586