Scintillator and solid-state neutron detectors and their applications

被引:0
作者
Sara Maria Carturan
Tommaso Marchi
Erica Fanchini
Raffaella De Vita
Paolo Finocchiaro
Alfio Pappalardo
机构
[1] Viale dell’Università 2,INFN, Laboratori Nazionali di Legnaro
[2] Università di Padova,Dipartimento di Fisica ed Astronomia
[3] Sezione di Genova,INFN
[4] Laboratori Nazionali del Sud,INFN
来源
The European Physical Journal Plus | / 129卷
关键词
Neutron Source; Light Output; Neutron Detection; Plastic Scintillator; Silicon Detector;
D O I
暂无
中图分类号
学科分类号
摘要
The application range of neutron detectors covers many topics, not only involving experimental research, but spanning tens of industrial, health, transport, cultural heritage fields of interest. Several studies focus on new scintillating materials where the light response, under fast and slow neutrons exposure, is triggered by proton recoil or by the presence of neutron capture materials as 10B, 6Li or 157Gd. Neutron monitors, where the robustness of silicon-based detectors can be fully exploited by coupling with suitable neutron absorber/converter materials, have recently proved their outstanding performances. Discrimination between neutron signals from other radiations, such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} - or cosmic rays, is achieved through timing techniques or with pulse shape analysis. Furthermore, the choice of the detection/discrimination techniques depends on the type of application the detector will be used for. An example is Radiation Portal Monitors (RPM) for cargo inspection or luggage control that are required to satisfy specific international standards for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} and neutron detection efficiencies. This paper is an overview of some of the National Institute of Nuclear Physics (INFN) activities in the field of neutron detection, involving novel technologies. We will describe the most recent advances related to scintillators and silicon-based detectors coupled with thin films of suitable converters for neutron detection and we will discuss applications in the field of nuclear security.
引用
收藏
相关论文
共 22 条
[1]  
Kouzes R.T.(2007)undefined Nucl. Sci. Symp. Conf. Rec. 2 1115-undefined
[2]  
Ovechkina L.(2009)undefined Phys. Proc. 2 161-undefined
[3]  
Bell Z.W.(2004)undefined IEEE Trans. Nucl. Sci. 51 1773-undefined
[4]  
Duxbury D.M.(2013)undefined IEEE Trans. Nucl. Sci. 60 1327-undefined
[5]  
Kouzes R.T.(2010)undefined Nucl. Instrum. Methods Phys. Res. A 623 1035-undefined
[6]  
Harvey J.A.(1979)undefined Nucl. Instrum. Methods 162 507-undefined
[7]  
Hill N.W.(2012)undefined JINST 7 C04004-undefined
[8]  
Iwanowska J.(2011)undefined Rad. Prot. Dosim. 143 471-undefined
[9]  
Carturan S.(2010)undefined IEEE Trans. Nucl. Sci. 57 891-undefined
[10]  
Quaranta A.(2013)undefined Mat. Chem. Phys. 137 951-undefined