Atomic and maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type

被引:1
|
作者
Sibei Yang
Dachun Yang
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
[2] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
来源
Collectanea Mathematica | 2019年 / 70卷
关键词
Musielak–Orlicz–Hardy space; Atom; Maximal function; Non-negative self-adjoint operator; Gaussian upper bound estimate; Space of homogeneous type; Strongly Lipschitz domain; Primary 42B25; Secondary 42B35; 46E30; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}$$\end{document} be a metric space with doubling measure and L be a non-negative self-adjoint operator on L2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathcal {X}})$$\end{document} whose heat kernels satisfy the Gaussian upper bound estimates. Assume that the growth function φ:X×[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi :\ {\mathcal {X}}\times [0,\infty ) \rightarrow [0,\infty )$$\end{document} satisfies that φ(x,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x,\cdot )$$\end{document} is an Orlicz function and φ(·,t)∈A∞(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\cdot ,t)\in {{\mathbb {A}}}_{\infty }({\mathcal {X}})$$\end{document} (the class of uniformly Muckenhoupt weights). Let Hφ,L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,L}({\mathcal {X}})$$\end{document} be the Musielak–Orlicz–Hardy space defined via the Lusin area function associated with the heat semigroup of L. In this article, the authors characterize the space Hφ,L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,L}({\mathcal {X}})$$\end{document} by means of atoms, non-tangential and radial maximal functions associated with L. In particular, when μ(X)<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ({\mathcal {X}})<\infty $$\end{document}, the local non-tangential and radial maximal function characterizations of Hφ,L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,L}({\mathcal {X}})$$\end{document} are obtained. As applications, the authors obtain various maximal function and the atomic characterizations of the “geometric” Musielak–Orlicz–Hardy spaces Hφ,r(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,r}(\Omega )$$\end{document} and Hφ,z(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,z}(\Omega )$$\end{document} on the strongly Lipschitz domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} associated with second-order self-adjoint elliptic operators with the Dirichlet and the Neumann boundary conditions; even when φ(x,t):=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x,t):=t$$\end{document} for any x∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in {\mathbb {R}}^n$$\end{document} and t∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,\infty )$$\end{document}, the equivalent characterizations of Hφ,z(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,z}(\Omega )$$\end{document} given in this article improve the known results via removing the assumption that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is unbounded.
引用
收藏
页码:197 / 246
页数:49
相关论文
共 50 条
  • [31] Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
    Sibei Yang
    Czechoslovak Mathematical Journal, 2015, 65 : 747 - 779
  • [32] Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators
    Zhang, Junqiang
    Cao, Jun
    Jiang, Renjin
    Yang, Dachun
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (05): : 1161 - 1200
  • [33] New Hardy Spaces of Musielak-Orlicz Type and Boundedness of Sublinear Operators
    Luong Dang Ky
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (01) : 115 - 150
  • [34] SOME ESTIMATES FOR SCHRODINGER TYPE OPERATORS ON MUSIELAK-ORLICZ-HARDY SPACES
    Yang, Sibei
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (04): : 1293 - 1328
  • [35] LUSIN AREA FUNCTION AND MOLECULAR CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Hou, Shaoxiong
    Yang, Dachun
    Yang, Sibei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (06)
  • [36] New Molecular Characterization of Musielak-Orlicz Hardy Spaces on Spaces of Homogeneous Type and Its Applications
    Yan, Xianjie
    Yang, Dachun
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (02) : 201 - 232
  • [37] Maximal function characterizations of Hardy spaces associated with Schrodinger operators on nilpotent Lie groups
    Jiang, Renjin
    Jiang, Xiaojuan
    Yang, Dachun
    REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (01): : 251 - 275
  • [38] Maximal Function and Riesz Transform Characterizations of Hardy Spaces Associated with Homogeneous Higher Order Elliptic Operators and Ball Quasi-Banach Function Spaces
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    CONSTRUCTIVE APPROXIMATION, 2025, 61 (01) : 1 - 61
  • [39] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Yanchang Han
    Yongsheng Han
    Ji Li
    Chaoqiang Tan
    Potential Analysis, 2018, 49 : 247 - 265
  • [40] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Han, Yanchang
    Han, Yongsheng
    Li, Ji
    Tan, Chaoqiang
    POTENTIAL ANALYSIS, 2018, 49 (02) : 247 - 265