Two singular dynamics of the nonlinear Schrödinger equation on a plane domain

被引:0
作者
N. Burq
P. Gérard
N. Tzetkov
机构
[1] Université Paris Sud,
[2] Mathématiques,undefined
[3] Bât 425,undefined
[4] 91405 Orsay Cedex,undefined
[5] France,undefined
[6] e-mail: Nicolas.burq@math.u-psud.fr,undefined
[7] Université Paris Sud,undefined
[8] Mathématiques,undefined
[9] Bât 425,undefined
[10] 91405 Orsay Cedex,undefined
[11] France,undefined
[12] e-mail: Patrick.gerard@math.u-psud.fr@math.u-psud.fr,undefined
[13] Université Paris Sud,undefined
[14] Mathématiques,undefined
[15] Bât 425,undefined
[16] 91405 Orsay Cedex,undefined
[17] France,undefined
[18] e-mail: Nikolay.tzvetkov@math.u-psud.fr,undefined
来源
Geometric and Functional Analysis | 2003年 / 13卷
关键词
Boundary Condition; Cauchy Problem; Sobolev Space; Bounded Domain; Dirichlet Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
We study the cubic, focusing nonlinear Schrödinger equation (NLS) posed on a bounded domain of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R}^{2} $\end{document} with Dirichlet boundary conditions. We describe two types of nonlinear evolutions. First we obtain solutions which blow up with a minimal L2 norm in .nite time at a .xed point of the interior of the domain. The argument can be performed equally well for the cubic NLS posed on the .at torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{T}^{2} $\end{document}. In the case when the domain is a disc, we also prove that the Cauchy problem is ill posed in the following sense: the .ow map is not uniformly continuous on bounded sets of the Sobolev space Hs, s> 1/3, contrary to what is known on the square (recall that the scale invariant Sobolev space for the cubic NLS in 2D is L2).
引用
收藏
页码:1 / 19
页数:18
相关论文
empty
未找到相关数据