Deformation of modules of weighted densities on the superspace R1|N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{1|N}}$$\end{document}

被引:0
作者
M. Abdaoui
H. Khalfoun
I. Laraiedh
机构
[1] Faculté des Sciences de Sfax,Département de Mathématiques
关键词
cohomology; deformation; weighted densities; symbol; 17B56; 53D55; 58H15;
D O I
10.1007/s10474-014-0433-1
中图分类号
学科分类号
摘要
Over the (1,N)-dimensional real superspace, N≧3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N \geqq 3}$$\end{document}, we study non-trivial deformations of the natural action of the orthosymplectic Lie superalgebra osp(N|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{osp}(N|2)}$$\end{document} on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and prove that any formal deformation is equivalent to its infinitisemal part. Likewise we study the same problem for the Lie superalgebra K(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}(N)}$$\end{document} of contact vector fields instead of osp(N|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{osp}(N|2)}$$\end{document} getting the same results. This work is the simplest generalization of a result by I. Basdouri and M. Ben Ammar [4] and F. Ammar and K. Kammoun [3].
引用
收藏
页码:104 / 123
页数:19
相关论文
共 4 条
  • [1] Agrebaoui B.(2002)Multi-parameter deformations of the module of symbols of differential operators Int. Math. Res. Not., 16 847-869
  • [2] Ammar F.(undefined)undefined undefined undefined undefined-undefined
  • [3] Lecomte P.(undefined)undefined undefined undefined undefined-undefined
  • [4] Ovsienko V.(undefined)undefined undefined undefined undefined-undefined