Fractional Geometrical Maximal Functions on Morrey Spaces with Variable Exponents

被引:0
作者
Kwok-Pun Ho
机构
[1] The Education University of Hong Kong,Department of Mathematics and Information Technology
来源
Results in Mathematics | 2022年 / 77卷
关键词
Fractional geometric maximal functions; Morrey spaces; variable exponent; extrapolation; 42B20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the mapping properties of the fractional geometric maximal functions on Morrey spaces with variable exponents. The main results cover the mapping properties of the fractional geometric maximal functions on the classical Morrey spaces and Lebesgue spaces with variable exponents.
引用
收藏
相关论文
共 48 条
[1]  
Almeida A(2008)Maximal and potential operators in variable exponent Morrey spaces Georgian Math. J. 15 195-208
[2]  
Hasanov J(1999)Non interpolation in Morrey–Campanato and Block Spaces Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 28 31-40
[3]  
Samko S(2014)Boundedness of Hardy–Littlewood maximal operator on block spaces with variable exponent Czechoslovak Math. J. 139 159-171
[4]  
Blasco O(1998)Weighted norm inequalities for the geometric maximal operator Publicacions Matemàtiques 42 239-263
[5]  
Ruiz A(2001)The minimal operator and the geometric maximal operator in Studia Math. 144 1-37
[6]  
Vega L(1999)Weighted norm inequalities for geometric fractional maximal operators J. Fourier Anal. Appl. 5 45-66
[7]  
Cheung KL(2006)The boundedness of classical operators on variable Ann. Acad. Sci. Fenn. Math. 31 239-264
[8]  
Ho K-P(1984) spaces Am. J. Math. 106 533-547
[9]  
Cruz-Uribe D(1982)Factorization theory and Bull. Am. Math. Soc. 7 393-395
[10]  
Neugebauer CJ(2005) weights Bull. Sci. Math. 129 657-700