The Excitation Spectrum of Two-Dimensional Bose Gases in the Gross–Pitaevskii Regime

被引:0
作者
Cristina Caraci
Serena Cenatiempo
Benjamin Schlein
机构
[1] University of Zurich,Institute of Mathematics
[2] Gran Sasso Science Institute,undefined
来源
Annales Henri Poincaré | 2023年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider a system of N bosons, in the two-dimensional unit torus. We assume particles to interact through a repulsive two-body potential, with a scattering length that is exponentially small in N (Gross–Pitaevskii regime). In this setting, we establish the validity of the predictions of Bogoliubov theory, determining the ground state energy of the Hamilton operator and its low-energy excitation spectrum, up to errors that vanish in the limit N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document}.
引用
收藏
页码:2877 / 2928
页数:51
相关论文
共 50 条
[41]   Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime [J].
Boccato, Chiara ;
Brennecke, Christian ;
Cenatiempo, Serena ;
Schlein, Benjamin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) :1311-1395
[42]   Yrast line of a rapidly rotating Bose gas: Gross-Pitaevskii regime [J].
Lieb, Elliott H. ;
Seiringer, Robert ;
Yngvason, Jakob .
PHYSICAL REVIEW A, 2009, 79 (06)
[43]   Observation of the Presuperfluid Regime in a Two-Dimensional Bose Gas [J].
Tung, S. ;
Lamporesi, G. ;
Lobser, D. ;
Xia, L. ;
Cornell, E. A. .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[44]   Turbulence in the two-dimensional Fourier-truncated Gross-Pitaevskii equation [J].
Shukla, Vishwanath ;
Brachet, Marc ;
Pandit, Rahul .
NEW JOURNAL OF PHYSICS, 2013, 15
[45]   Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity [J].
Sakaguchi, H ;
Malomed, BA .
PHYSICAL REVIEW E, 2006, 73 (02)
[46]   Topological aspect of vortex lines in two-dimensional Gross-Pitaevskii theory [J].
赵力 ;
杨捷 ;
谢群英 ;
田苗 .
Chinese Physics B, 2012, 21 (09) :94-102
[47]   Analytical Solutions for the Two-Dimensional Gross-Pitaevskii Equation with a Harmonic Trap [J].
石玉仁 ;
王雪玲 ;
王光辉 ;
刘丛波 ;
杨红娟 .
Communications in Theoretical Physics, 2013, 59 (03) :273-278
[48]   Analytical Solutions for the Two-Dimensional Gross-Pitaevskii Equation with a Harmonic Trap [J].
Shi Yu-Ren ;
Wang Xue-Ling ;
Wang Guang-Hui ;
Liu Cong-Bo ;
Yang Hong-Juan .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (03) :273-278
[49]   Topological aspect of vortex lines in two-dimensional Gross-Pitaevskii theory [J].
Zhao Li ;
Yang Jie ;
Xie Qun-Ying ;
Tian Miao .
CHINESE PHYSICS B, 2012, 21 (09)
[50]   The low energy spectrum of trapped bosons in the Gross-Pitaevskii regime [J].
Brennecke, Christian .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (05)